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Reactive Scattering with Row-Orthonormal Hyperspherical Coordinates. 2.
Transformation Properties and Hamiltonian for Tetraatomic Systems
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The formalism for tetraatomic reactive scattering using row-orthonormal hyperspherical coordinates is presented.
The transformation properties of these coordinates under kinematic rotations and symmetry operations are
derived, as are the corresponding Hamiltonian and volume element. Each of the nine operators which contribute
to this Hamiltonian is kinematic-rotation invariant. Continuity conditions appropriate for the absence and
presence of the geometric phase associated with conical intersections are described. It is concluded that the
row-orthonormal hyperspherical coordinates are particularly well suited for calculations of reactive scattering
in tetraatomic systems.

1. Introduction Extension of accuratb initio reactive scattering calculations
) ) . of state-to-state integral and differential cross sections to

| first met Yuan T. Lee 30 years ago, in the spring of 1967, tetraatomic systems is not only highly desirable but has become
when he was a postdoctoral fellow working with Dudley  feasiple with the advent of massively parallel high-performance
Herschbach at Harvard. He was in the middle of designing the compuyters. It has already been shown that multiple-instruction
first crossed molecular beam machine which used a “universal” multiple-data (MIMD) distributed memory computers are very
mass spectrometer detector. | was greatly impressed by hisye|| suited for reactive scattering calculations which use
de_S|gr_1 _skllls_,_wh|ch were J_ust_ one mgnlfestanon of h|s_enormous symmetrized hyperspherical coordinates and hyperradial propa-
scientific ability. My admiration of his work grew continuously ation?° Furthermore, recent results on tetraatomic systems
over the years as he demonstrated exquisite scientific taste a”%ave been published in most of which some of the degrees of
made a profound mark on modern chemical dynamics. It is freedom were treated exactly and others approxim&fefy,
with great pleasure that | dedicate this paper to him in gycept for three that used a time-dependent wave packet
celebration of his 60th birthday, and in honor of over 30 years approach and for which all degrees of freedom were treated
of major accomplishments in the elucidation of the dynamics exactly in thel = 0 partial wave onlf262 A fourth one was
of elementary chemical reactions. proposed which employs a propagation method based on the

Recentab initio calculations of converged integral and use of different hyperradial coordinates in different arrangement
differential cross sections for atendiatomic molecules attotal  channels and treats all partial waves exa8tlyn order to use
energies up to 2.6 eV using a propagation approach to solvethe permutation symmetries of the system effectively, it would
the time-independent Scidinger equation have all been done  be desirable to generalize the concept of symmetrized hyper-
with some form of symmetrized hyperspherical coordin&tés.  spherical coordinaté (which proved so useful for triatomic
These coordinates have also permitted inclusion of the effect systems) to tetraatomic systems. Such a generalization has been
of the geometric phase associated with conical intersectidfis. recently developef but the system’s Hamiltonian in those
The geometric phase effect is apt to play an important role in coordinates is complicated. A different approach is to use row-
many systems displaying such intersections. In addition, many orthonormal hyperspherical coordinaté§® For triatomic
propagation calculations involving a limited number of partial systems these two kinds of coordinates are related in a very
waves have also been doHe?! only one of which did not  simple mannéf85 but for tetraatomic systems this relation is
employ hyperspherical coordinates of one variety or andther.  significantly more comple£® In spite of this, the Hamiltonian
This indicates the effectiveness of the hyperspherical coordinatein row-orthonormal coordinates is relatively simple both for
propagation method. triatomic systenfd and for tetraatomic oné$,and its terms

For the last 8 years or so an alternative approach to display useful invariance properties under kinematic rotations
performing accurate quantum mechanical reactive scatteringand symmetry operations. The purpose of this paper is to derive
integral and differential cross section calculations using varia- this Hamiltonian and its properties. A summary of some of
tional methods has been very successfully apgfetf. In the results have been given previou&lyRecently, a related
addition, two new methods have been recently developed. Oneset of hyperspherical coordinates and the associated Hamiltonian
of them involves a time-dependent wave packet approach with has also been proposét.
absorbing wall®->2 and the other a time-independent method  |n section 2 we define row-orthonormal hyperspherical
as well as absorbing walf8. A further interesting new method  coordinates foN -atom systems. In section 3 the transformation
for ime-dependent wave packet propagation involving complex properties of these coordinates under kinematic rotations and
potentials to absorb and re-emit wave functions in regions symmetry operations are examined. This is followed in section
separating the reactant from the product arrangements has been by a derivation of the Hamiltonian of such systems, of the

proposed and extended to time-independent wave packet associated volume element, and of the Hamiltonian's transfor-
calculation®> All of these methods have their individual mation propertiesl In section 5 we discuss the Continuity

strengths and are worth pursuing further. conditions for the system'’s eigenfunctions with and without
inclusion of the geometric phase effect, and in section 6 we
® Abstract published irAdvance ACS Abstract#ugust 1, 1997. summarize the results.
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Reactive Scattering
2. Row-Orthonormal Hyperspherical Coordinates for
N-Atom Systems

We will consider in this section the general ca¢e 3 and
particularize it toN = 4 in later sections. The definitions of
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inertia tensor by’

| =u(p?l = K)

(wherel is the 3x 3 identity matrix) and is called the moment

2.7)

quantities of interest and their properties have been given in of inertia product matrix.

detail elsewhef®67 and will only be summarized here.

2.1. Jacobi Matrices and Their Products. Let the nuclei
of the atoms comprising the systemm®eand the corresponding
nuclear masses g = (i = 1, 2 ...,N). We locate them in
physical space b Jacobi vector®g, ri®, ..., riN-1, where
Rg is the position vector of the center of masof the system
of nuclei with respect to a space-fixed origi {r;0|j = 1, 2,
..., N — 1} is a set of relative position vectors of the centers of
mass of the nuclei for a clustering scheif&67 and r;™N-1

Under kinematic rotations; transforms according to the
similarity transformation
SV = va SIINM/ (28)
and is invariant under space rotations. On the other hiénd,
displays a reverse behavior, i.e., it is invariant under kinematic
rotations and changes according to a similarity transformation
to a matrixK under space rotatiort8%” As a result of these

passes througls. Associated with these vectors and masses properties the following relations can be easily derived:

we define another set of massesu, ©?, ..., u" and
define the Jacobi mass-scaled coordinaté8 y'!

ry = L0 (2.1)

whereu is an effective reduced mass of the system and is

independent of the clustering scherhe The kinetic energy
operatorT of the total relative motion of the nuclei is given in
terms of these mass-scaled coordinates by

N—-1
T 2 2
=
We now define the 3« (N — 1) Jacobi matrix?
1 2 N—1
XD Y
f 1), N—1 1) 2 N-1
o= (rPr@ ) =0 N (2.3)
(1) () (N-1)
X]{3 Xls e XAS

wherex;,(j) = X9, X8 = y¥, andx{} = 2 are the components
of r¥ in either of the space-fixed Cartesian fran@syz =
Oxaxoxz or Gxyz = Gxaxpxg whose corresponding axes have
parallel directions and equal senses.v i§ another clustering

scheme, the corresponding is related topS' by
=N, (2.4)

whereNj, is an (N — 1) -dimensional orthogonal square matrix

whose elements depend only on the masses of the atoms and

the clustering schemdsandv. As a result of the orthogonality
of Ny, theA — v mass-scaled Jacobi coordinate transformation
is called a kinematic rotatiof®. We can, without loss of
generality, restrict ourselves to kinematic rotations which are
proper, i.e., for which the determinantf, is +1. As a result

of (2.4), the right-hand side of (2.2) isindependent, as is the
hyperradiusp = 0. It is useful to introduce the products of
Jacobi matricé8

~sf _sf

S, =0; p; (2.5)

and

K =05 5 (2.6)
A means the transpose of matix S; is a symmetric square
matrix of dimensionsN — 1), andK is a 3 x 3 non-negative

definite symmetric square matrix. The elementsSpfre the

scalar products¥-r®® and it is called the scalar product
matrix®® The matrixK is related to the system’s moment of

detS, = detS, (2.9)
trS,=trS,=p’ (2.10)
detK = detK (2.11)
trkK =trK = p? (2.12)

where defA and trA mean respectively the determinant and
the trace of the square matrix

The eigenvalueK;, K, andKs of K are real and non-negative
and are placed for subsequent convenience in the order

K;iy=K, 2K, =0 (2.13)

In view of the kinematic rotation invariance Kf and of (2.12)
and (2.13), we may define theindependent moment of inertia
hyperangle®) and¢ by

K¥2=p sin @ cos¢ 2.14
1
K?=psin@ sing (2.15)
K2 = p cos (2.16)
wheréd®
O0<¢p=mld (2.17)

/
0 < 6 < arcsin [1/(1+ cosp)? < arcsin(%)1 ‘547
(2.18)

2.2. Row-Orthonormal Form of Jacobi Matrices and
Row-Orthonormal Hyperspherical Coordinates. ForN > 4
the number of columns qeﬁjf is equal to or greater than the
number 3 of its rows and can be, according to the singular value
decomposition theorem for real matric€g; put in the form

Pﬁf =A,BQ;

whereA is a 3x 3 orthogonal matrixB is the diagonal matrix
whose diagonal elements a2, K2, andKs'/2 respectively,
andQ); is a 3x (N — 1) row-orthogonal matrix. When the

are all different, the matriced,, B, and Q, are essentially
unique once the ordering (2.13) is adopted; the slight lack of
uniqueness is discussed in section 3. The determinaAy, of
can bet+1 or—1, i.e.,A;, can be proper or improper. Onée

has been determined frormjf, one can define an associated
proper orthogonal matrixA; by

(2.19)
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A=A, detA; (2.20) three are the “external” Euler anglas= (a;,b;,c;) andf,¢,0;
= (00D, 08N are N — 7 “internal” hyperangles
in terms of whichp}' becomes (whlch reduce to two angle§ and §; for triatomic systems
o since in this cas@ = 0 and this angle does not count as a
p; = (—1y%ABQ, (2.21) coordinate buf still depends on the one internal hyperangle
] . . 0,%7). In the Born-Oppenheimer single electronically-adiabatic
Wher_em is 0 if detA; = +1 and 1 if detAi_ = —1. The state approximation, the corresponding potential energy function
matrices ofAj, B, and Q,l_ can be e_xpressed in terms of row- v, is independent of anda; but depends op and on the set
orthonormal hyperspherical coordinates as of internal hyperangleé,¢,0;
AL =R (a,b,.c) (2.22) The ranges of the!) appearing in (2.24) are determined by
the requirement that for general geometries of the system (which
sin 6 cos¢ 0 0 exclude some special geometries as discussed in section 5 for
B = oN (6¢) = p 0 sinfsing 0 (2.23) tetraatomic systems) the correspondence between tiogv-

orthonormal hyperspherical coordinates aﬁobe one-to-one.

0 0 cosf
D @ N9 For tetraatomic systems, (2.27) limits the ranges ofdfﬁeél
=Q (0, 0, ...,0"9) (2.24) 1,2, 3) to
The anglesy, b;, andc; are the Euler angles which rotate the 0<oPo® <27 0<0P<a (2.30)

space-fixed framéxyzto the principal-axes-of-inertia body-

fixed frame Gxy"*z", and R (ay.bz,cz) is the corresponding  owever, this one-to-one correspondence, as shown in section
proper rotation matrix? Although the directions of the axes 31 fyrther limits these ranges’®o

of the body-fixed frame ard-independent, their senses, as

shown in section 3.2 fdN = 4, are generally not. These Euler 0<6Ws®<x 0<®@<g (2.31)
angles have the usual ranges of definition AT AT '

O<a,c, <2t O=<b=ax (2.25) Once this one-to-one correspondence betwgrand the
total set of hyperspherical coordinatag y, p, 0, ¢, 9, is
In addition, {6P]i = 1, 2, ..., 3 — 9} is a set of internal established, a similar one-to-one correspondence results between
configuration space hyperangles a@ds a 3x (N — 1) row- the scalar product matri§; and the internal hyperspherical
orthonormal matrix, i.e., satisfies the condition coordinate, 6, ¢, 9,, except for some special geometries, as

discussed in section 5.

QQ=I (2.26)
] i 3. Transformation Properties of Row-Orthonormal
For tetraatomic system® depends on three internal hyper-  Hyperspherical Coordinates for Tetraatomic Systems
angleso?, 0?, and 0¥ and can be chosen to be the proper

three-dimensional square orthogonal matrix In this section we determine the ranges of ofe hyper-
angles and describe how row-orthonormal hyperspherical co-
Q=R (0M02,6%) (2.27) ordinates for tetraatomic systems transform under kinematic

rotations, inversion through the system’s center of mass, and
For such systems;'is a 3x 3 square matrix and (2.21) can be Permutation of identical particles.
rewritten as 3.1. The Ranges of the Hyperangle$,. Given pjf (i.e.,
) ) r®d r@ andr), (2.29) furnishesy uniquely. As a result,
0= (-1 R (a,b,.c;) pN (8,6) R (01,092,068 (2.28) @. 28) can be considered as a system of nine scalar equations
in the nine unknownsy, p, 6, ¢, d,. It was possible to solve
with the corresponding equations for triatomic systems explicitly (see
sections 4.1 and 4.2 of ref 67). For the tetraatomic case, the
(—1y = sign ¢{Y x r? - r®) = sign detoS" (2.29) (analytical) solution of (2.28) is very cumbersome. Neverthe-
less, as stated in the next-to-the-last paragraph of section 2.2,
where the sign of zero is considered to-be Thisy has been  the ranges of these tetraatomic hyperspherical coordinates can
written without the indexX because it is invariant under proper pe determined from the requirement of a one-to-one cor-

kinematic rotations sincep;’ and p}' have equal determi-  respondence between them apfi taking (2.28) to be an
nants, as can be seen from (2.4). Its value is O (I)f implicit definition of these coordinates.

r? and r® comprise a right-handed (left-handed) set of  As stated in section 2.2, the matricks B, Q; which appear
vectors. ForN = 3 (i.e., triatomic systems); has dimen-  in (2.19), and as a result the matA of (2.20), are essentially

sions 3x 2 and the singular value decomposition theorem is unique as long as the eigenvalues of (2.6) are nondegenerate

still valid with ¥ = 0, Q; being now a row-orthogonal but not ~ and placed in a specific order, such as (2.13). The only lack of

row-orthonormal matrix. This special case has been considereduniqueness are phase factors equatioor —1 for the columns

in detail previoushf” of A} and rows ofQ,. Indeed, let; (j =1, 2, 3) be the 3« 3
Equation 2.21, withA}, B, andQ; given by (2.22) through  diagonal matrices defined by

(2.24) is calle@®57 the row-orthonormal form of the Jacobi

matrix pjf. The method used previously to arrive & itvas 100 10 0 -1 00
essentially a rederivation of the singular value decomposition 1= 0-1 0 Il,=1 01 0)l;=10-10
theorem. The quantities;, by, ¢, ¥, p, 6, ¢, 0@, 62 0 0-1 00-1 0 01
o) are called thel row-orthonormal hyperspherical coor- (3.1)

dinates of theN-atom system. They consist of the chirality
coordinatey, the hyperradiup, and 3 — 4 angles of which These matrices have the properties



Reactive Scattering

2
I

=1 detl=+1 j=1,2,3 (3.2)

The diagonality oB allows their insertion into (2.21) as

p5' = (14 A}l BI,Q,

i=12,3 (3.3)

All four right-hand sides of (2.21) and (3.3) are equal. We now
define the matriceé\; and Qx4 by

Ajli =A}l Qlj =1,Q, j=123 (3.4)

The A}, are 3x 3 proper orthogonal matrices, and tQg are
3 x (N — 1) row-orthonormal matrices. The four matricks
andA’, are distinct as arQ; andQy,. This leads to the lack of
uniqueness mentioned above and is applicable for arbiiary
> 3.

For the tetraatomic case, (3.4) becomes

IQ(a/lj) = Ii(az)|j Ii(5/1]) = |1F~3(5A) (3.5

We can easily express tlaxg in terms ofa; and theélj in terms
of 6, by equating the third row and column elements of the
right- and left-hand sides of (3.5). The result is

&, = (( + &) mod 27,7 — by, (w — c;) mod 2r)
0;,= (2 = 6%) mod 2v,w — 6P, (7w + 6{¥) mod 21)
(3.6)
a, = ((z + &) mod 2r,7 — b, (27 — ¢;) mod 27)
0,,= ((x — o) mod 2r,w — 6%, (7 + 6{¥) mod 2r)
(3.7)
&, = (a;,b;, (r + ¢;) mod 2r)

0;, = (( + 6{) mod 27, 61,61 (3.8)
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01
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"

Figure 1. Ranges of definition of the®® (i = 1, 2, 3) row-
orthonormal hyperspherical coordinates for tetraatomic systems. The
set of cubes C, @j = 1, 2, 3) yields a 1 to 4correspondence between
Jacobi matrice&ff and sets of such coordinates. Limiting their range

to that of cube C (see (2.31) and section 3.1) makes this correspondence
become 1 to 1, except for the special geometries considered in section
5

pif is obtained, it should be remembered that for some special
geometries of the four-particle system more than one set of
hyperspherical coordinates satisfying (2.31) can be obtained (see
section 5). As a result, when using these coordinates for solving
scattering problems, special attention should be paid to these
geometries.

3.2. Kinematic Rotations. We will now derive the effect
of kinematic rotations on the row-orthonormal hyperspherical
coordinates for tetraatomic systems. For triatomic systems, it
was possible to obtain this effect by using one of two methods:
67 one based on the explicit dependence of such coordinates on
pjf and the other based on the implicit dependence described
by the expression fqasif as a function of those coordinates. For
tetraatomic systems only the implicit method will be used since,
as mentioned at the beginning of section 3.1, the explicit
dependence is very cumbersome.

We already showed, after (2.29), thatis invariant under
proper kinematic rotations. The matrik defined by (2.6) is
also invariant under such rotati¢h€” and, therefore, so are

If the 69) are permitted to assume arbitrary values in the rangesthe p, 0, ¢ coordinates given by (2.14) through (2.16).

defined by (2.30), the generally distinct four sets of row-
orthonormal coordinates, x, p, 0, ¢, 0, anday, , p, 0, ¢, 9y,

(i = 1, 2, 3) furnish the same Jacobi matp'§£ leading to a 4
to 1 correspondence betwecpﬁ and distinct sets of hyper-

spherical coordinates. This can be reduced to a one-to-on

correspondence by restricting the allowed ranges oﬁgheas
the following analysis indicates.

Let us consider &, space whose Cartesian coordinate axes

are ®P, 002, 00¥). Equations (2.30) define a paral-

Replacing (2.28) and its counterpart into (2.4) and using these
kinematic-rotation-invariant properties results in

R@)N(@.¢)R(6,)=R(@)N @O0 R©O)IN,, (3.9

€We know that the directions of the principal axes of inertia are

determined by the positions of the four particles and are invariant
under kinematic rotations. Since both principal axes frames
GxMy172 and GXvy'vZv must have the same right-handedness

as the space-fixed frame, either none or two of the senses of

lelopiped in this space, which can be partitioned into four cubes ine |1 axes can differ from the correspondifj ones. As a

C, G (j =1, 2, 3) whose edges have lengthas indicated in
Figure 1. As we allow a point = (6{%,02,6%) to scan the
internal region of cube C, points B (6{,0%,6%) scan the
internal regions of cubes;CTherefore, we must limit the range
of the o to that of cube C. Consideration of the surface of C
indicates that points on it8{" = 7 and 6% = x faces,

including the corresponding edges, should be omitted, whereas
points on all other faces and edges should be allowed. These

results are expressed by (2.31). The rangeg, of 0, ¢, and
the a; are still those given by = 0, 1,p = 0, and (2.17),
(2.18), and (2.25). These ranges span all possd;ﬁ)fleand

result, we must have
R(a)=1R(a)

wherel; (j =0, ..., 3) stands for the identity matrix fpr= 0
and the matrices defined by (3.1) fo= 1, 2, 3. Replacement
of (3.10) into (3.9) leads to

R ,)= Ij R (0) N,

(3.10)

(3.11)

This equation has a solution in the range (2.30) for each of the
values ofj. However, from considerations similar to those in

reciprocally,pjf spans these ranges. Although, for a given set the last paragraph of section 3.1 we are assured that one and
of such row-orthonormal hyperspherical coordinates, a single only one of these lies in the range (2.31). In this manber
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TABLE 1: Relation betweenj and n{Y, n{®

i ngy ng
0 0 0
1 0 1
2 1 1
3 1 0
. : 1 3 S
TABLE 2: Relation between n{, n?, 4,, and o,
g o» o o
0=09<z 0=6W=<mx 0 0 5O o? o
' p<dW<or 1 0 30—, 3@ 5@
a<d®<27 0s6W<ng 1 1 7-080 7-6© 5%z
a<d®<2r 0 1 27-60 750 58— 7

v

TABLE 3: Relation between a, and n{), n{), and a; and the

v
Senses of thesx!'y'vZ Axes in Terms of Those of

GX4Gy G2

) n® a0 b, c? GX* Gy G2
o 0 & by ¢ + o+ o+
1 0 & bi T+c - - +
1 1 n+a nwn—b =x-—¢ — + —
0 1 Tta wT—-b 2r—q + - -

2 The relations between theandl Euler angles are given modulo
2.

andN;y, together with (3.11) uniquely determipendd,, and
use of (3.10) and a knowledge p&nda; uniquely determine
a,.

All four matricesl;j can be put in the form

(_1)”&9 0 0
IJ = Inﬁ})nﬁ) =10 (_1)nﬁ)+n@ 0 (3.12)
0 0 (-1™

wheren{Y) andn{® are 0 or 1 and depend a¥ in a stepwise
manner. Their relation tpis given in Table 1. We now define
d, as the unigue solution of

RG)=R@)N, (3.13)

D @

in range (2.30). In Table 2 we givg,, n;;/, ando, in terms of

this 6,.

In Table 3, we give the values fa, in terms ofn{’, n',
anda;, as well as the senses of thx"y""Z"” axes in terms of
those ofGX"y”Z" as the plus or minus signs according to

Gx" = (-1 Gx*
G)}V — (_1)n§})+nﬁ,) Gyﬂ.
GZ2' = (-1)¥ G2 (3.14)

3.3. Inversion through the Center of Mass. Let us now

Kuppermann

(%) =y + 1 mod2 (3.17)

As a result of (2.5) and (3.1% is inversion-invariant, and
in view of (2.14) through (2.16), so axef,¢

Tp,0.8) = p,0.¢

Furthermore, (2.7) shows th# determines the moment of
tensorl and therefore the directions of the principal axes of
inertia, but not their senses. Those directions are therefore
inversion-invariant, and since the senses of either none or two
of the axes of the[Gx*y'*Z%) frame can be different from
those of theGx*y*Z* frame, we must have, in analogy with
(4.10)

(3.18)

R(7a) =R (a) (3.19)

We now write
7%= (1) R(7a,) (7p) N(70,7) R(7D,) (3.20)

Replacement of (2.28), (3.19), and (3.20) into (3.15) and use
of (3.17) and (3.18) leads to
R(79,) = ||R(5)) (3.21)

Similarly to (3.11), (3.21) has a solution in the range (2.31)
for one and one only of the four possible valueg,aind that
solution is

(3.22)
corresponding t¢ = 0. When replaced in (3.19), it yields
(3.23)

A

Ja, =aq,

We conclude that/changes the chirality of the system, while
leaving the remaining row-orthonormal hyperspherical coordi-
nates unchanged.

3.4. Permutations of Identical Nuclei. Of the four nuclei
P (i =1, ..., 4) comprising the tetraatomic system, all, some,
or none can be identical. We should therefore consider the four
kinds of systems 4 AsB, A,B,, A,BC and ABCD, where A
through D stand for distinct nuclei. Possible examples are the
Hg4, H,OH, H,O,, HOCO, and HOCN, respectively. Itis useful
to determine the effect of the permutations of identicab®
the row-orthonormal hyperspherical coordinates for the purpose
of decoupling the associated nuclear motion equatisoattering
or bound-according to the irreducible representations of the
corresponding permutation groups.

Generally speaking we have either no, one, or two sets of
identical particles: ABCD; AA3B and ABC; and AB,,
respectively. For the ABCD case, no permutations are consid-
ered. For A, AsB, and ABC we consider the permutations
comprising the§,, S, andS, permutation groups, respectively.
Finally, for A;B, we must consider the direct product group
S®S,. For the sake of brevity, we will only discuss explicitly

consider the effect of inverting the tetraatomic system through the AsB case, appropriate for the,8H system; generalization

its center of mass. Representing the inversion operatarby
we have

7o =—pj (3.15)
From this expression we get
det(7ps) = —deto (3.16)

and, in view of (2.29)

to the other cases is however straightforward.

Let the nucleiP;, P,, andP3 be identical to each other and
distinct from P4. We define thel = 1 arrangement Jacobi
coordinates as the one in whick® is the vector fromP; to
P,, 11 that from the center of mass of ti, P, pair to P3
andri® the one connecting the center-of-mass of FiE,P3
triplet toP4. We will consider the effect of th& permutations
on the correspondingifJacobi matrix. This group is isomor-
phic with the point groufs , of an equilateral triangl&t For
this reason it is convenient to use the notation
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EEG 3 2) 515(1 § 2) 522@ § i) cos@of) = (—1)¥ coso?  sin@{) = sinof (3.35)
=029 ¢=(129) (12 eas cosGof) = (~1)¥ cos 6~ )
%=\213 =231 =3 1 2) ®24 sin@%) = (1% sine® — B, (3.36)

where the permutation ] ) ~ ]
From these equations, valid for &) we obtain the values of

(1 2 3) (—1)"8 and (1)"®8 given in Table 4 and the following

ijok detailed expressions f@0d; and ga:
replaces 1 by, 2 byj, and 3 byk, with i,j,k being an arbitrary E(Sl =9, Eal =a, (3.37)
permutation of 1,2,3. The permutatioks C*, andC~ have
even parity ando;, 0>, and 63 have odd parity. We will ( O @2 (3)) @ _ 21
designate a general operationSfor Cz, by §. The effect of 5.5, = 0177 = 01, 3 03 for0= 07" = 3
gon pif can be written as o (ﬂ _ 5(11),5(12),5?” _ 5(13)) for% < 5(13) <7
o5’ = piN, (3.25) (3:38)

whereNj is a 3 x 3 orthogonal matrix given By 018y =

(~1Fcosp, sin By 0 (ay.by,(r + ¢;) mod2r) for0< o < 2—?7)1

Ny =|—(-1)°sinf, cospy 0 (3.26) (( + &) mod2r,7 — by,(27 — ;) mod 27) for%ﬂ <o®<a

0 0 1 (3.39)
where (1)¢ = +1 for the even parityy and 1) = —1 for T T
the odd parityd. The angles3; are defined by . (JT - 6(11),5(12),5 - 5(13)) for0< o <% (3.40)

2

020, = A
@ _ s@5T _ @3) T 5O
Pe=Ps=0 Po=P =7 ﬁc-=ﬁaz=%” (3.27) (51 A0 61) forg=or <z

3

Equations 3.25 through 3.27 result from the definition of the OBy =

(0] _
r;’ for A = 1 and the fact thaP;, P,, and P; have equal 4 a) mod2r.a — b.. (27 — ¢.) mod2z @ _7
masses. We see from (3.26) that ((m +ay) = by ( ) ) for0=< 67’ < 3

(ay,by, (7 + ¢;) mod2r) forZ < 6(13) <
= (—1)" 3
deN, = (-1) (3.28) o
and therefore thally is proper (improper) for even (odd) parity 6.0, = (7 6(11),6(12),n B 6(13)) (3.42)

0.
Replacement of (3.25) into (2.6) shows thatis invariant AL _ _
under all§g and therefore thap, 0, and ¢ are unaffected by 038y = (( + 8y mod2r,w — by, (27 = ¢,) mod2r) (3.43)

these operations: &to, =

9(919,615) = (p19!¢) (329) (.7'[ (Sgl), 6(2) ﬂ (553)) for0 < (3&3) < 2-_7t
To determine the effect of on y we use (2.29), its{:;,oif o 3 (3.44)
counterpart and (3.28). The result is (6(1) 6(2) (3(3) 3) for? < 6(13) <m

Oy = x + gmod2 (3.30) Cta, =
which means that even (odd) permutatigrdo not (do) change o
the chirality coordinatg. To obtain the effect of on d; and (= + ay) mod2z,w — by,(27 — ¢;) mod2r) for 0 < o < 3
a; we use (_2.28) yvith/l =1 and its g,oif counterpart qnd (aby.c,) forz—”< 5@ <
proceed as in section 3.2, remembering that permutations of | """ 1™1 3~ 1

identical nuclei cannot change the directions of the principal (3.45)
axes of inertia. The result is

& o, =
R(@0) = (1) N@ R (9,) I”E%’”Ef) (3-31) ( o 05 (2) =1 2” + 5(13)) for0 =< 6(13) <z
R (0a) = |ng)ng)R (a) (3.32) ( (1),7t— 5(12)15(13)_%) for%s o < (3.46)
wherel R is given by .(3.12) with th.e subscripis replaced g —
by §. The two expressions above yield 1
(1) =signsinp? — g)  (—1)¥' = (—1)¥"° (3.33) @by for0.< oY <3

(7 + ay) mod2r,w — by, ( — ¢,) mod2r) for% <o <x

" coso®  sin@) = sinol (3.34) (3.47)

cos@ol) = (—1)"
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TABLE 4: Values of (—1)® and (—1)" determinev; and theril. The approach used is very similar in
R m > spirit to the one employed previously byh@ and Linderberg
g range ofd{’ (1) (—1)% to determine the kinetic energy functional for four-particle
E 0o <z 1 1 systemg$
01 0= 6P < 27/3 -1 1 4.1.1. The Matrix Gradient Operator. The elements of
2713 < 0P < 1 -1 V; are the coefficients of the expansion of the total nine-
0> 0<% < a3 1 -1 dimensional differential operatat in terms of the Cartesian
a3 <o < -1 1 coordinate differentials
03 0< 6(13) < 1 -1 3 ]
c* 0< oY <273 -1 -1 ~ -
2713 = 0O < 7 1 1 d= % dx? — (4.4)
c 0= 0® < a3 1 1 =
a3< 6P < -1 -1

To obtainV, in terms of the row-orthonormal hyperspherical

These results are relatively simple and bear a close resemblanc€oordinates, we also exparidn terms of the latter, and identify
to the corresponding ones in ref 67. The reason for this both expansions. To that effect we wrieas

simplicity is the ordering ofr{Y, r®, and r®® adopted in N_Aa oA .A

2 311)’72 y 9 1 P d=d, +d,+d; (4.5)
4. The Hamiltonian for Tetraatomic Systems and Its where

Transformation Properties N 9
. . — d, =da-—+df—+dc, —— (4.6)
We now derive the nuclear motion Hamiltonian operator for . oy ab,1 8
tetraatomic systems in row-orthonormal hyperspherical coor-
dinates as well as the corresponding volume element and KA
transformation properties under the symmetry operations of the d N d’o ap + db’l + d¢ ¢ (4.7)
system.
4.1. The Hamiltonian. We assume that all matrix elements . 0
of the first and second derivative operators in the electronically- 3 Zdai E
)

adiabatic representation vanish and therefore that the motion

of the nuclei occurs on a single electronically-adiabatic potential = AL
It is useful to express the operatty; in terms of the components

energy surfac®. In addition we neglect spin-containing terms ;> =>~"" ;
J%1,J45,3%3 of the nuclear motion angular momentum operator

in the system’s nuclear motion Hamiltonian, which is taken to % h o . ) .
be 4 J along theGx#y'“Z4 principal-moment-of-inertia body-fixed

axes. Inverting the relation

(4.8)

H=T,+ V,(0,0,0,0 4.1 A
2 1(0,0,9,0;) (4.1) J|1/1 aloa,
. o 3 | =P |arab, | =

whereT) is the nuclear motion kinetic energy operator ahd v2 Y A
depends only on the relative position of the nuclei, and therefore ‘]'3’1 aloc,
on p,0,¢ andd; only. The kinetic energy of the motion of the
center of mass of the system has already been excluded from — csch, cosc; sinc; cotb, cosc; dloa,
T,. The formalism can of course be augmeffed include A csch, sinc,  cosc, — coth, sinc, | |a/ab, | (4.9)

multiple potential energy surfaces, angular momentum coupling i 0 0 1 a/ac
between nuclear and electronic spin and orbital motions, other 4
relativistic effects, and mass polarization effects, to make it as we get, as in the triatomic c#8e

accurate as desired. This, however, transcends the objectives

of this paper. Our goal is to obtail; in row-orthonormal dlda, . |—sinb, cosc, sinb, sinc, cosb, I
hyperspherical coordinates for tetraatomic systems and analyze |3/ob, | = ! sin c, COSC; 0 j'zl
the properties of the resulting expression. dlac, 0 0 1 4

In analogy to the triatomic ca$é,we define the matrix 3
gradient operato¥, by (4.10)

3/3)(511) 3/3)(%2) 8/8x§N_1) which permits us to rewrite (4.6) as
1 1 1
— (1) (2) (N-1) N A
V= |0 o a0, (42) 4, ="~ sinb, cosc,da, + sincdb,) 3 +

a2 alax? .. alox Y

. . A1 A
We can expres; in terms ofV, as (sinb, sinc,da; + cosc,db,) J; + (cosb,da; + dc;) J5]

(4.11)

2
T,=- h—tr(V1 V) (4.3) A comparison of the coefficients of the angular momentum
u operators in this expression with the elements oRHR matrix

where, even though the matrix operator depends ord, the shows that (4.11) can be written as

scalar operatofl; does not, as can easily be shown from i 3 o
kinematic rotation transformation property (2.4). From now on d, =—— €ix (RAR); JL’1 (4.12)
we will drop the subscripl on the latter. We will first =
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whereeiy is the Levi-Civita density (also called the alternating
tensor, the isotropic tensor of rank 3, or theensor)®384 This
is a convenient form ofly; which is valid for allN > 2.

To expressd; andds; in a more useful form, we take the
differential of (2.28). The result is

dos' = (—1¥[(dR)pNQ + R d(pN)Q + R pNdQ] (4.13)
whereQ is given by (2.27). Left-multiplying this expression

by R, right-multiplying it by Q, and using the orthogonality
property of these matrices we get

R (dof) Q = (~1) [R(dR)pN + d(pN) + pN(dQ)Q]
(4.14)

Due to that orthogonality, botRdR and @Q) Q are skew-

symmetric matrices (of dimensionsx33) and as a result their
diagonal elements vanish. On the other haaiand therefore
its differential are diagonal matrices. Consequently,

d(oN) = (—1y diag[R(dp3) Q]

R(dR) pN + pN(dQ)Q = (—1¥* off diagR(de3) Q] (4.16)

(4.15)

where diad\ is a diagonal matrix whose diagonal elements are
equal to the corresponding ones of the square mAtaxd off
diagA is a matrix whose diagonal elements vanish and whose
off-diagonal elements are equal to the corresponding ones of
A. The first of these expressions yields a convenient form for
d; and the second one fak;.

From (4.15) we get

Ndp + pNjde + p sin OM ,d¢ = (—1)* diag[R(dp3) Q]

(4.17)
where
aN cosf cosgp O 0
Ng (0.9) = 0 0 cosfsing 0 (4.18)
0 0 —siné
and
—sing 0 0
My(¢) = %@?TN ={o cosp 0| (419
sind g |4 0o o
The matrices N, bl andN, have the properties
trN? = trN” = trM; = 1
trNNj = trNM , = trNy;M , = 0 (4.20)

As a consequence, left-multiplying (4.17) byand taking the
traces of both sides we obtain

do = (—1y" Z Ni[R (dp3) Qly =

ij=1

Z N;IR (d3) QI
i) =1
" (4.21)

Similarly, left-multiplying (4.17) byNy or M4 and taking the
traces of both sides results in

3
do = ( 1)X Ng R (dp/lf) Q]u

Piy=

(4.22)
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3

dg = 5[R (do) Ql;  (4.23)
Replacement into (4.7) now furnishes
d, =
(-1 'y [R (do) QI[N a+N' SV
.le P:) Q| Ny 1000 U psing i
(4.24)

which is the desired convenient form fds. This form is also
valid for N > 4.

We now consider (4.16), which will permit us to express the
nonvanishing (i.e., off-diagonal) elements of the skew-symmetric
matricesRd R and ¢Q) Q in terms of the off-diagonal elements
of R (dp{) 0. Obtaining these expressions is useful bec&se
(dp3 " Q appears ird, (see (4.24)) and as a result it would be
desirable to have this same matrix appear in the expressions
for diy andds;. In view of the diagonality ofN, we obtain
from the off-diagonal elements of both sides of (4.16) the
relation

[Rdﬁ]iijjj + oN; [(dQ)Q]ij

i =

=(—1/[R (dP?)Q] ij
(4.25)

Interchangingi andj in this expression and using the skew-
symmetry ofR (dR) and @Q) Q gives

i — PN [(dQ)QT; = (—1Y[R(dp})Q;
i ] (4.26)

—[RdR] ijoN

These two expressions can be considered as a system of two
linear equations in the two quantitieR [dR)]; and [dQ) Q];
which permit us to obtain them in terms d® [(dpjf) Ql; and

[R (do3) Ql;i as

[RAR], ((AY{){NJ,[R(dpJ)Q]” + N R}
Nj — Ni
i = (4.27)
[(dQ)Q]ij =
(1 1r
o7 {N;[R(dp3)Q]; + N;[R(dp3)Q;}
i

i Zj (4.28)
Replacement of (4.27) into (4.12) results in an expression for
dy; in terms of the matrixR (dp;’) Q and the operatorsjj In
view of (2.28),d, should play a similar role to that dd.
Therefore, associated t) we wish to define a hyperangular
momentum vector operatér, with componentsml,L/b,Lg3 We
must notice, however, that whereas from (4.27) we Befd;)

d R (a)];, from (4.28) we ge{[dQ (6,)] Q (62)}, which, in
view of (2.27), is the same 4§d R (6,)]R (9,)}j- The matrices
RdR and @R) R are different since is not symmetric. As a
result, a useful definition ok ; in terms ofd, should have a
form for which, after an expression f(ir;i similar to (4.12) is
obtained, the elements ofR) R (i.e., @Q) Q) appear rather
than those oRd R. This objective can be accomplished if,
rather than the body-fixed componentsi¥fused in (4.9), we
introduce thespace-fixed typeomponents of_; defined by®°
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L, 3190
0| = B, |0 | - [R (do3)Q]; = Z Rdx’Q (4.34)
L, 330 _ _ o -
Replacing (4.34) into (4.33) and identifying the coefficients of
. o @ _ aing® o) @\ [a/96WD the Cartesian differentials in the resulting expression with those
C.OS(S’; cot 612 smlaﬂ C_OS% Cscélz ?2) in (4.4) yields the elements of the matrix gradient operator
7| =sinol? coto? coso®  sinof cscol? | |9/30; defined by (4.2). The final result can be expressed as
1 0 0 330 o
(4.29) V,=(—1[RAQ+P)] (4.35)

) . ) . whereA is a 3 x 3 diagonal matrix operator defined by
which, upon inversion, yields

10 1 9

8106 A:N3_+N 1590 " Missingae 30
E S . . .

A andP; is a 3 x 3 matrix operator given by

©)
/307 o A
o 0 1 Ly,
11— sino{® cosoM 0 L, | 4.30q)  with

c0s0M sino@ sinoM sino® coso?| |L,, . 3 RQ.N, 3

A i~mj’ 'mm

F, =—— _— b 4.
A Fip |,;1 . — N kZﬂkak (4.38)
The difference between the body-fixed characted'bfind the mm

space-fixed character &f;, as encompassed in (4.9) and (4.29), i 3 RQ,N, 3
respectively, is important and stems from the fact thatRhe (;/l = e €y (4.39)
(a,) in (2.28) appears at the left &f, whereadR(d,) appears at ! hp 151 N2, — N k; M

its right. Substituting (4.30) into (4.8) we get
It is possible to put (4.38) and (4.39) in matrix operator form

d, = ﬁ[(—sin oM do® + coso® sin 6P doNL, + with the help of the matrix operatdka defined by
37 5 U0 ) 100,
c0sd,@d6® + sin 6% sin 6PdoL, + 3 B
( 1 U0 /1(1) ) (;1)) (/132) ' (AB)Im _ Z Zlmk k 2 (4.40)
(dd}” + coso; do; )L%] (4.31) SN2 — N
As for (4.11), a comparison of the coefficients of the (k = whereB is a column vector operator with ?OmPOUEI%&S_ Ba,
1, 2, 3) in this expression with the elements of @Y Q matrix and Bs. This matrix operator is symmetric and its diagonal
shows that (4.31) can be rewritten as elements vanish. It is given explicitly by
i 3 BS BZ
d = — — ol 0
d3l TR iszl €[ (dQ)Qj; L, (4.32) R N§2 Nil Nil N§3
v A B3 Bl
A ; i As=|Z — 2 O NN (4.41)
where the [§Q)Q]; are given by (4.28). Equation 4.32 has N3, — N, N3; — N3,
the same structure as (4.12). |§2 |§1
We now replace (4.27) into (4.12) and (4.28) into (4.32) and > > > 0
the resulting equations, together with (4.24), into (4.5). After Ni3 = N3z Njz — N,
some simple algebraic manipulations we get the important
expression

In terms of it (4.38) and (4.39) can be expressed as

d=(-1y Z[R (dp3)Ql; x IA:,1=—hI—pIQAjMNQ (4.42)
i)=1
’N +Nla+|v| 9 &, = "ONA R (4.43)
ap 0p80 pSineagb i bR b '

Cijk Great care must be taken in manipulating this last expression
A Z N; AQ (4.33) since if B (x) is a matrix of operators which act on variable
P(N andC (x) is another matrix which depends gnthen in general

The quantitye/(N; — Nf) which appears in (4.33) vanishes (ﬁ)w(x) = (Cé)w(x) (4.44)
by definition (as doesiy) for i =j. We now write the elements A
of R (dpi’) Q explicitly as wherey (x) is a scalar function of. TreatingBC as a matrix
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operator, (4.44) means that

BC=CB (4.45)
As aresult, it is safer to use (4.38) and (4.39) instead of (4.42)
and (4.43). .

4.1.2. The Kinetic Energy Operator. To evaluateT we
replace (4.35) into (4.3):

2
T=-— % tr[(RAQ + Pl)(RAQ + PA)] (4.46)
In view of the remarks made after (4.43), it is better to rewrite

this expression in the “safe” form

2 3
T=—— Y (RAQ+P)(RAQ + P), =
k=1
2 3
—— T (RAQ + P)i (4.47)
i,k=1
From it we get
4
T=5T, (4.48)
& a
with the T,, (a = 1 through 4) defined by
2 3
>~ _ 5 A 2
T, = o :1(RAQ)ik (4.49)
2 3
/12 - - (RAQ)IkPllk (4.50)
ik=1
2 3
=~ P, (RAQ) (4.51)
i,k=1
2 3
T.=—7) (P (4.52)

i,k=1

We now proceed to evaluate tﬁ@a. The operatorRAQ)ic
can be expressed as

3
(RAQ)Ik z (R)H(A)Im(Q)mk Z RiiAllélQOk:
m=1

3
;RAQW (4.53)

The matrix elementsR; and Qx depend ona; and d;,
respectively, whereas as indicated by (4.36) the opefatacts
onp, 6, and¢ only. ThereforeA; commutes with bott; and
Qi and we can put (4.53) in the form

3 3
(RAQ)ik = ZRiQmAu = ZAﬂRnQu( (4.54)

Replacement of this expression into (4.49) and use of the
orthogonality properties dR andQ and of the definition oA
given by (4.36) yields

1a o0

Zupzapp dp

N k2

T, =- 2% trA% = (4.55)

ZM
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where K2 is an effective hyperangular momentum operator
associated with the principal moment of inertia hyperangles

¢

2 a2 1 9 8 1 &
K°=-h sm@BOSI 0 Si7 0 907 (4.56)
Similarly it is straightforward to show that
A R .~ A
Tiz =— Ztr(RAQPi) =0 (4.57)
The evaluation of'i',13 is similarly straightforward, albeit
lengthier. The result is
2 3 Nog2
A h mnfimk
T13 =—-— — A (4.58)
1o 1L N2 — N

The evaluation ofi;, is more complicated because the operators
3 andL; act on the angles; andd;, respectively, which appear
in R (&) and Q (J,). To that effect it is useful to use the
relations

IR(@) = iﬁé@R(ag k=123 (4.59)
and

3 _h ® =

L, R(6;) = TR((SA)E k=123 (4.60)
wheree® is the 3x 3 skew-symmetric matrix defined by

9], =€yn klMm=1,23 (4.61)
With their help and some extensive but otherwise straightfor-

ward algebra we get:

2
(4.62)

3

1 €im

A

T, = (N,

N|| Ll
P 3 e !

Substituting (4.55), (4.57), (4.58), and (4.62) into (4.48) leads
to the expression for the kinetic energy operator in the row-
orthonormal hyperspherical coordinas y, p, 0, ¢, 6;,

A A 1 =«
T=T,p) + e A%(@,0,0,0,) (4.63)

wheref,,(p) is the system’s hyperradial kinetic energy operator
(4.64)

and A2 its grand conical angular momentum operator

A2=K*0,4) + B(0,¢) + C(a,,0,,0,¢)  (4.65)

The operatoK2 was defined in (4.56) anB and C2 are given
by

B(O.) = ~2K[0)0.0) 3 + G PO) 35 (4.66)

S|n9

where
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U _ U i _ ’
NoNp,, = NpaNy - NagNp = NooNp .

by(6.¢) =
’ Ngz - Nil Nga - Ngz
NpaNy = NagNjy
—————— (4.67)
Ni; — N3g
O NpMy, = NgMy - NppM,,, - NgM
by(0.4) = 2 \2 CONZ - N2 NE — N2
22 11 33 22 11 33
(4.68)
and
~2 (szJlsl o Nlll:/ls)z + (Nlng o N22|:/13)2
C (aﬂ,vél;eyd)) = +

(Nz, = Nyy*)*
(Nslel/I o N22L/11)2 + (szJlf o N33|-,11)2
2 212 +
(N33 — N3y
(Nn‘]gl - N33|-/12)2 + (N33~]|2A - N11|—12)2
(N§1 - N33)2

(4.69)

The Ni, Np;,, and M, in these equations are the diagonal
elements of the matricé$ Ny, andM 4 defined by (2.23), (4.18),
and (4.19), respectively.
The nuclear motion Schdinger equation for the system
associated with (5.1) is
HW(y,a,,0,0,0,0,) = EW (4.70)
In view of the expression for the four-particle volume element

derived in section 4.2, it is convenient to perform the dependent
variable change defined by

_ Yy
p'g"%(0.9)

whereg (0,¢) is given by (4.102). The Schdinger equation
satisfied byy is

(4.71)

Hy = Eyp (4.72)

where the new nuclear motion Hamiltoni&his given by

H=7+V,, (4.73)
with
~ N 1 %
T=T(p) + = 48,0.4.9)) (4.74)
2up
N hZ 32
70) =~ 5 4.75
P(p ) 2u 8p2 ( )
2= K¥0.9) + C(a,,0,;6.9) (4.76)
V. IS an effective potential defined as
V;“eff = V/l(p'e’(p’ai) + V/lcem(pier(p) (477)

with the centrifugal potentiaV,_., being

Kuppermann

h? [ 1

2,u,02|.sin2 0 co 2¢ -

Vzcem(Pﬁ,(ﬁ) =

1

+
sin? 6 cos ¢ — co< 6
2cog 0

(sir? 6 sirf ¢ — co< 6)?

1
sir? 6 sin’ ¢ — co< 0
2cos 6
(sir? 6 cos ¢ — co< 6)?
(4.78)

The operatoC? is positive-definite and can be written as
¢?’=¢, ¢, (4.79)

where (A:A is a 6-dimensional column vector operator whose
elementC;, (i = 1, ..., 6) are

AL A
_ NZZJIl o N33|-/11

2 2 2
N22 - N33
NaoJy — Ny L
3307 1152,
7 2 2
N3z — Ni;
Ny J% — N,
11Y3 225,
73 2 2
Ny — N3,
NaoJ7 — N,
331 2251,
(e 2 2
N3z — N,
Ny J5 — Ngol
11Y2 331,
s N2 n2

2 2
Ny; — N33

& szJlé1 - N11L/13 (4.80)
s - 4~ A .
° Ngz - Nil
As will be shown in section 4.3, although the signs of fltle
areA-dependent (i.e., may change under v transformations),
2 is kinematic-rotation-invariant. The form of the kinetic
energy operatot/ given by (4.74) through (4.76) is particularly
simple and appropriate for using in reactive scattering calcula-
tions of tetraatomic systems.

In view of (2.7),1 andK have equal eigenvector matrices
and their eigenvalues are inter-related by

I = p(p® = K) = up’(1 = Np)

i=123 (4.81)

As a result of this equation and of (2.13), the principal moments
of inertial; are ordered according to

l,21,21,20 (4.82)

From (4.81) we obtain the following relations between the
differences which appear in the denominators of (4.69) and the
differences between pairs of principal moments of inertia

1
_2(|l —
pp

N3, — N2, = =-—siffcos2p <0 (4.83)

1)
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N2y — NB, = (1, — 1) = cod 0 — sirf O sirf ¢ = 0
)
(4.84)
N2, — Nggzizas— I)=sirf @ cos ¢ —cogh <0
o
(4.85)

Therefore, for nuclear configurations for which any two of the

system’s principal moments of inertia become degenerate, the

Hamiltonian operator has a pole (the well-known Eckart
singularitieg88?), as does the centrifugal potential. It should
be noted that in view of (4.82), we can only hale= I3 if
both these moments of inertia are equdktoThe corresponding
geometries are discussed after (5.3). In solving the Siager
equation, special attention must be paid to those poles.

4.2. The Volume Element. In what follows, it becomes
useful to define the two sets of nine coordinatgsand o, (1
=1,..9) by

— — —

— @ — w2 )

. =X % =x x5 =x) (4.86)
and
0,=p 0,=0 0,,=¢
o= 0,=b 0, =¢
0, = oM 0, = 0@ 0y, = o (4.87)
and the two 9x 1 column vectorx, ando; by
XD =x, (o) =o0, 1=1,..,9 (4.88)

Let furthermoredr and do; be the nine-dimensional volume

elements
9 3 )
dr = dea. =[x

ij=1

(4.89)
and

(4.90)

9
do, = ﬂdo,1I

Let G, be the 9x 9 nonorthogonal Jacobian matrix of the,
— X; transformation defined by

do;
(G =Gy, = (—1y 3X;:
kl=1,2,..9 (4.91)
In terms of it we can write
dr = & (4.92)
|deG; |

In order to obtaindz in terms of the row-orthonormal hyper-
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spherical coordinatego; we seek an expression for Getas a
function of those coordinates. It is expected that, in view of
the structure of (2.28), in Whicbﬁf is expressed as a product of
3 x 3 matricesG; will have some rows which are orthogonal
to each other, i.e., that the® 9 matrix F;, = G,;G; will have
a block-diagonal structure. In order to exploit this possibility,
we use the following identity to evaluate Ggt which is valid
whether or not such a structure occurs:
|deG,| = [detG,G,)]** = [detF,]¥?  (4.93)

We now proceed to evaluafe;. Let V; be the 9x 1 vector
gradient operator defined by

d

1=1,2,..9

(V)= (4.94)

It has the same elements as those of the 3 matrix gradient
operatorV, defined by (4.2) and can be obtained from the latter
by stacking its columns under each other. As a result of (4.91),

the kth row of G is the 1 x 9 row vector of%ﬂuk and thelth
column ofG, is the 9x 1 column vectoV;o;, and therefore

(Fu = (V,0,)(V,0,) = t((¥,0,)(V,0,)]

kl=1,2,..9 (4.95)
The evaluation of~; has thus been reduced to the evaluation
of the nine 3x 3 matricesV ;0;, which can be accomplished
in a straightforward manner with the help of (4.35). The
eventual result is thaF; has the expected block-diagonal

structure
_(Fu 0
0 F/lz

where F;, and F;, are square matrices of dimensions<33
and 6 x 6 respectively given by

F, (4.96)

10 0
F,=(0 1/0* O (4.97)
00 1/(p®sir? 6)

and

_1(K; 0 \(u w)([K; 0
Fiz_pZ(o PA)(W U)(o p,) %

The matriceK; and P, appearing in this expression were
defined in (4.9) and (4.29), respectively, ddcandW are 3x
3 matrices defined by

U(0.¢9) =
2 2
N22 + N33
2 2 \2 0
(sz - N33)
N2, 4+ N?
0 —2_ 9 (4.99)
(N33 - N11)
; ; N+ N,
(N2 B N22)2
and 11 2
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W(0,¢) 5 A
_[ N;oN33 0 0
(N2, — N)? GXYZ
N3aNy g N, R(3,)
—2{o —= (4.100) ! *
(N33 — Ny A R(SV) Ao A
N;;No» F GXYZ «<——— GX"Y"Z L,
0 0 2 212
(N7 — N3 R(;\ /(1) ©

Relations (4.96) through (4.100), together with (2.23), (4.9), M Ny My
(4.29), and (4.83) through (4.85) eventually yield ax'yvz¥

detr, = [p"® sin’ b, sin? 6Pg%(0,4) si’ 6] 2 (4.101) ¢

A"
where Figure 2. Systems of different mathematical frames GXYZ, &X
GX*Y*Z?, and GXY"Z", the associated hyperangular momentum vector
9(6,4) = sir? 6 cos 2(cog 6 — sirf 0 sirf ¢) x operators, F, [ ;, and(,, and the rotation matrices which inter-relate
. them. This diagram summarizes the transformation properties of these
(cog 6 — sir? 6 co ¢) operators.
1 . -
=== 1)1, — 11, — 19 =0 (4.102) each of the corresponding frames. This diagram was chosen

to be consistent with (3.11) and (3.13), i.e., those equations can
o . . . be derived from that diagram. It therefore appropriately reflects
Substitution of (4.101) and (4.93) into (4.92) gives the desired o 5gehra associated with the— v transformation. From it

final result we get the desired transformation property
dr = sinb,da,db,dc,0°dpg(8,¢) sin 6d6dg sin L, =1y an ols (4.107)
2 1 2 3

651 )désl )déﬁ )désl ) which, when compared with (4.105), indicatAes thatransforms

under kinematic rotations the same way thiatdoes, and as a

result, that GXY*Z* transforms the same way ag'&'*Z* does.

The correctness of (4.107) has been independently verified by

a much more laborious direct calculation starting with (4.29)

and itsv counterpart and using (3.11) and the chain rule to obtain

L, in terms ofL ;.

As a result of (4.105) and (4.107) we see that the operators
N;4 — NiLz, which appear in (4.69) can change sign under
kinematic rotations but that their squares, six of which contribute
to C?, are kinematic-rptation-invariant, as arg, K2, andB.
Therefore, not only isl' invariant under such transformations
but also each of nine contributing operators have this property.
In addition, sincep,0,¢,0, and p,6,¢,0, represent the same
internal configuration of the tetraatomic system, we have

= sinb,da,db,dc,p’do=(1, — 1)1, — 1) x
u
(I, — 1) sin 6dddg sin 0PdoMdoPdo® (4.103)

4.3. Transformation Properties. The system’s Hamiltonian
must, of course, be invariant under the operations considered
in sections 3.2 through 3.4. In the present section we examine
how each individual term in (4.63) through (4.69) transforms
under these operations.

4.3.1. Kinematic Rotations. As shown in section 3.2,
whereasy, p, 0, ¢ are invariant under kinematic rotatiores,
andd; are not. We wish to determine the effect of such rotations
on the operatord'* andL,; which act on these coordinates.

As indicated after (3.9) the and4 principal axes of inertia

frames are related through V,(0,0,0,0;) =V, (0,0,0,0,) =V (4.108)
GX'Y'2" =1, OXNy* 2 (4.104)  and all the contributions to the system’s Hamiltonian are
o individually kinematic-rotation-invariant. Such term-by-term
wherel,, @, @ is given by (3.12). As a resulf!* andJ"* are independence that displays when expressed in row-orthonor-
related through the equivalent expression mal hyperspherical coordinates is very convenient for both
analytical and computational purposes.
=1y @d" (4.105) 4.3.2. Inversion through the Center of Mass. As stated

after (3.23), the only coordinate affected by the inversion
This means that either these two operators are equal or two ofoperation/is the chirality coordinatg. Since, however, this

its components differ in sign: coordinate does not appearliy we conclude that every term
of the Hamiltonian is invariant undey.
I=(- i I W=( l)nlv(1)+nkv(3)j|2;“ = (_1)%(3)3!31 4.3.3. Permutations of Identical Nuclei. We consider here

the case in whicli?;, P», andP3 are identical to each other and
distinct fromP,4 and use the arrangement channel coordinates
A =1 described in section 3.4. In view of (3.37) through (3.47)
we conclude thatd is term-by-term invariant under all sym-
metry operations 08;. This is a very useful property.

(4.106)

The values ofh{) andn{® have been given in Table 2.

Let us consider the angular momenta associated with) the
internal hyperspherical angles. For that purpose, the diagram
depicted in Figure 2 is very useful. In it, GXYZ and GX
are auxiliary coordinate systems. The matrices associated with
the arrows are the transformation matrices between the corre-
sponding frames, and the vector operateys; F, L,;, andL, Under the electronically-adiabatic conditions spelled out at

are the representation of a hypothetical angular momentum inthe beginning of section 4.1, the wave function describing a

5. Continuity Conditions for the Tetraatomic Schrodinger
Equation
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physical state of a molecular system is the product of an the internal configurations of the system, excluding its chirality.
electronic wave function, which depends parametrically on the As a result, the special geometries of interest can be derived
position of the nuclei, and a nuclear wave function. This product from an analysis of (5.3). This analysis is performed keeping
must be single-valued with respect to the positions of the nuclei, (2.13) through (2.16) and (2.23) in mind, considering the values
but its individual factors need not satisfy such a condition. of 6,¢ for which (a)Ni; = Ny < Nssz (prolate symmetric top
Nevertheless, the electronic wave function is usually chosen torotor), (b) N11 = Nssz > N, (oblate symmetric top rotor), and
be a single-valued function of the nuclear geometry, in which (c) Ni; = Nz2 = Na3 (spherical top rotor), and examining the
case so is the nuclear wave function. However, if the electroni- correspondingS; and X,;. Cases a and c lead to special
cally-adiabatic potential energy surface being considered dis- geometries whereas case b does not. The results are:

plays a conical intersection, the electronic wave function, if 1. 9 = 0. X; is independent of andaﬁ”.

required to be real and to depend on the nuclear coordinatesin 2. ¢ = 7/4 and@ = arcsin(2/3Y2. X; is independent of

a manner which is as continuous as possible, changes sign ag(®

Fhe _syste_m trav_erses a closed Ioo_p aropnd the conical intersection 3. 0 = arcsin(2/3Y2= 54.7 and$ = 7/4. X; is independent

in nine-dimensional nuclear configuration sp&ten order that of 8;.

the electronuclgar wave function be ev.erywherelsmgle-valued, In addition, due to the structure of matr,’ if 622) =0

the corresponding nuclear wave function must in such a case S g ds on® and @ th h thei V. a simil
undergo a compensating change of sign, called the geometric® epends or;” and o; through their sum only, a similar

“10 : property being valid fora; andc, if by = 0. At all of these
gg?j‘;e%ﬁ;détomggioﬁ’liiqgiigﬁ:a%;émré effect have been geometries, the volume elemet of (4.103) vanishes. For

To implement the single-valuedness condition in the absence“35€S 1 and 2 we hattis = Nza < Ngg, with the moments of

of a conical intersection, or to include the geometric phase effect Ilgsrrtcl?alsle aln(irlmzet’fg?rgni(ireailllitg oer??ahs?rtz;e:]?;;r?egrle;%tre(r;;;fnz i
in the presence of one, it is convenient to utilize coordinates @ - ’ .)g. o !
bearing one-to-one correspondences with the configurations of% IS Set equal to zero, the vector§ (j = 1, 2, 3) are
the system. The space-fixed mass-scaled Jacobi Cartesiaf'thogonal to each other anfP = r?. If the three nucleb;,,
coordinateséji) (i=1,23j=1,2, .., N— 1) of (2.3) display P@Z, andPy, havg equal mgss_es, the geometryl|s that 03f aregular
this kind of one-to-one correspondence for all possible con- trigonal pyramid, andX; is independent b and 6% but
figurations (including different orientations in space for a given depends om. For case 3N11 = Nz2 = Ng3, the system’s three
internal geometry). However, whenever angular coordinates aremoments of inertia are equal, and all three vectdfshave
introduced, such correspondence breaks down for specialequal lengths in addition to being orthogonal to each other. The
arrangements of the nuclei. In this section we consider thesefirst five components oK; vanish in this case, and the sixth
special geometries for tetraatomic systems when using the row-one equals-{ 1)’ p, independently 0d;. If the four nuclei are

orthonormal hyperspherical coordinatesy, p, 0, ¢, d;. This identical, the geometry of the configuration is a regular
is conveniently done with the help of the symmetrized internal tetrahedron. Associated to all these special geometries, there
configuration space mapping vectdy defined by® are distinct sets of values of the row-orthonormal hyperspherical
coordinates which lead to the saméf, and the system’s
})[r(a)Z + r(2)2 _ Zr(l)ﬁ electronuclear wave function must have the same value at those
2] 4 4 degenerate sets. This boundary condition must be fulfilled
V3 @GP _ .2 regardless of whether or not the system displays a conical
o " —r ZJ intersection and can be imposed through a judicious choice of
X, = 1 \/§r(3)-r(2) (5.1) basis functions (either analytical or numerical) in thep, 6,
LA hyperangular coordinates.
V3@ , — .
) Let us consider a system in which the nudkej P,, andP;
\/§r§2).r£1) are identical to each other and distinct frétp Let us adopt
pXs the A = 1 arrangement channel coordinates of section 3.4 and

consider the motion of the system on an electronically-adiabatic
potential energy surface which displays a conical intersection
= (=YD x 1 @12 4 1r @) (W24 (@ o (@212 with another such surf_ace for conflggratmns f_or whieh) Py,
Xe = (ZLYTIVT > 77 A I < i I < ] ]5 ) andP3 are on the vertices of an equilateral triangle &hds
(5.2) on the trigonal axis of symmetry of that triangle. When the

This vector undergoes a six-dimensional proper rotation underSySte.m traverses a closgd Ioop in 9D nuclear configuration space
that, in 6D internal configuration space surrounds the locus of

A — v transformations and displays a one-to-one correspondence . : . - -
with internal configurations of the system. As a consequence points representing such regular pyramid configurations, the 90

of (2.28), its components can be expressed as functions of thenuclear wave _functlon must ghange sign. A Ioop L, going
internal hyperspherical coordinateso, 6, ¢, 6;. Replacement through an arbitrary configuration of the system definedhy

of (2.28) into (2.5) furnishes 2% P 0,'¢, and o, can l()zc)aL choseg)Lln gengral as follows. We
maintainyt, p*, 64, ¢4, ;”-, andd;”- for points on L constant
- @ (©) i
S, =R( )p2N2(0,¢)R(6 ) (5.3) and equal toy, p, 6, ¢, ;7 and d;”, respectively, and vary
' ’ ’ O from o to oY + 7, modulozz. At the same time, we

. . . L L . 1)L
from which we can calculate thé’? and therO-r{) needed to ~ change the Euler angles, by, andcy with 6f" from ay, by,

where

evaluate the componensg, (I = 1, 2, ..., 5) ofX;. Since|X;| andcy, to (@ + ) mod2r, 7 — by, and @ — c1) modz2r,

= p, the magnitude oKs can be obtained from these first five respectively. The reason for choosiaff" as the parametric
components, and its sign is-1).. In this manner, given, p, variable which spans L is that the componentXgfare linear

0, ¢, and 9;, we can calculateX;. There is a one-to-one functions of sin 2" and cos 2".

correspondence between the elements;@nd the components If, on the other hand, the system does not display a conical

of X, (except for the sign 0Kg) and therefore betwee®, and intersection, its nuclear wave function must have the same value



6382 J. Phys. Chem. A, Vol. 101, No. 36, 1997

at the beginning and end of that loop. Such continuity

conditions on the nuclear wave functions may be imposed by

an appropriate choice of basis functionginp, andd;. Forg¢
= 7l/4, 6(12) = 0 and in the presence of a conical intersection,

the condition that the electronuclear wave function not diverge
at the geometries of that intersection forces the corresponding
nuclear wave function to vanish at those geometries. In the
absence of a conical intersection, the nuclear wave function at

those values o and 6P is independent 0d{" and 6® sum

only. In either case, the resulting electronuclear wave function

Kuppermann

(22) For two reviews, see: (a) Manolopoulos, D. E.; Clary, DAGnu.
Rep. C (R. Soc. Chemlp89 86, 95. (b) Miller, W. H. Annu. Re. Phys.
Chem.199Q 41, 245.

(23) Zhang, J. Z. H.; Miller, W. HChem. Phys. Lettl987 140, 329;
1988 153 465;1989 159 130;J. Chem. Phys1989 91, 1528.

(24) zZhang, J. Z. H.; Miller, W. HJ. Chem. Phys1989 88, 4549;
1989 90, 7610;199Q 92, 1811. Auerbach, S. M.; Zhang, J. Z. H.; Miller,
W. H. J. Chem. Soc., Faraday Trans99Q 86, 1701.

(25) Thompson, W. H.; Miller, W. HJ. Chem. Physl994 101, 8620.

(26) Zhang, J. Z. HChem. Phys. Lett1991, 181, 63.

(27) Manolopoulos, D. E. Wyatt, R. EEhem. Phys. Lett1988 152
23;1989 159 123;J. Chem. Phys199Q 92, 810.

(28) Manolopoulos, D. E.; D'Mello, M.; Wyatt, R. El. Chem. Phys.

satisfies the single-valuedness condition discussed two para-199Q 93, 403.

graphs earlier.

Generally speaking, once a given system of coordinates is

(29) D’'Mello, M.; Manolopoulos, D. E.; Wyatt, R. EEhem. Phys. Lett.
199Q 168 113.
(30) Manolopoulos, D. E.; D'Mello, M.; Wyatt, R. E.; Walker, R. B.

chosen, the corresponding continuity conditions must be deter-chem. Phys. Lett1990 169, 482.

mined before a scattering calculation can be performed.

6. Conclusions

We have considered in this paper a set of row-orthonormal ;.

(31) Mladenovic, M.; Zhao, M.; Truhlar, D. G.; Schwenke, D. W.; Sun,
Y.; Kouri, D. J.J. Phys. Chem1988 92, 7035.

(32) Zhao, M.; Truhlar, D. G.; Schwenke, D. W.; Kouri, D.JJ.Phys.
Chem.199Q 94, 74.
(33) Haug, K.; Schwenke, D. W.; Shima, Y.; Truhlar, D. G.; Zhang, J.
H.; Kouri, D. J.J. Phys. Cheml1986 90, 6757.

hyperspherical coordinates for tetraatomic systems and derived (34) zhang, J. Z. H.; Kouri, D. J.; Haug, K.; Schwenke, D. W.; Shima,

the corresponding nuclear motion Hamiltonian. The simple

transformation properties of the terms of the latter under
kinematic rotations and symmetry operations make those

coordinates a very promising candidate for performing efficient
accurateab initio reactive scattering calculations.
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