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The formalism for tetraatomic reactive scattering using row-orthonormal hyperspherical coordinates is presented.
The transformation properties of these coordinates under kinematic rotations and symmetry operations are
derived, as are the corresponding Hamiltonian and volume element. Each of the nine operators which contribute
to this Hamiltonian is kinematic-rotation invariant. Continuity conditions appropriate for the absence and
presence of the geometric phase associated with conical intersections are described. It is concluded that the
row-orthonormal hyperspherical coordinates are particularly well suited for calculations of reactive scattering
in tetraatomic systems.

1. Introduction

I first met Yuan T. Lee 30 years ago, in the spring of 1967,
when he was a postdoctoral fellow working with Dudley
Herschbach at Harvard. He was in the middle of designing the
first crossed molecular beam machine which used a “universal”
mass spectrometer detector. I was greatly impressed by his
design skills, which were just one manifestation of his enormous
scientific ability. My admiration of his work grew continuously
over the years as he demonstrated exquisite scientific taste and
made a profound mark on modern chemical dynamics. It is
with great pleasure that I dedicate this paper to him in
celebration of his 60th birthday, and in honor of over 30 years
of major accomplishments in the elucidation of the dynamics
of elementary chemical reactions.
Recent ab initio calculations of converged integral and

differential cross sections for atom-diatomic molecules at total
energies up to 2.6 eV using a propagation approach to solve
the time-independent Schro¨dinger equation have all been done
with some form of symmetrized hyperspherical coordinates.1-6

These coordinates have also permitted inclusion of the effect
of the geometric phase associated with conical intersections.4-10

The geometric phase effect is apt to play an important role in
many systems displaying such intersections. In addition, many
propagation calculations involving a limited number of partial
waves have also been done,11-21 only one of which did not
employ hyperspherical coordinates of one variety or another.11

This indicates the effectiveness of the hyperspherical coordinate
propagation method.
For the last 8 years or so an alternative approach to

performing accurate quantum mechanical reactive scattering
integral and differential cross section calculations using varia-
tional methods has been very successfully applied.22-49 In
addition, two new methods have been recently developed. One
of them involves a time-dependent wave packet approach with
absorbing walls50-52 and the other a time-independent method
as well as absorbing walls.53 A further interesting new method
for time-dependent wave packet propagation involving complex
potentials to absorb and re-emit wave functions in regions
separating the reactant from the product arrangements has been
proposed54 and extended to time-independent wave packet
calculations.55 All of these methods have their individual
strengths and are worth pursuing further.

Extension of accurateab initio reactive scattering calculations
of state-to-state integral and differential cross sections to
tetraatomic systems is not only highly desirable but has become
feasible with the advent of massively parallel high-performance
computers. It has already been shown that multiple-instruction
multiple-data (MIMD) distributed memory computers are very
well suited for reactive scattering calculations which use
symmetrized hyperspherical coordinates and hyperradial propa-
gation.20 Furthermore, recent results on tetraatomic systems
have been published in most of which some of the degrees of
freedom were treated exactly and others approximately,56-59

except for three that used a time-dependent wave packet
approach and for which all degrees of freedom were treated
exactly in theJ ) 0 partial wave only.60-62 A fourth one was
proposed which employs a propagation method based on the
use of different hyperradial coordinates in different arrangement
channels and treats all partial waves exactly.63 In order to use
the permutation symmetries of the system effectively, it would
be desirable to generalize the concept of symmetrized hyper-
spherical coordinates64 (which proved so useful for triatomic
systems) to tetraatomic systems. Such a generalization has been
recently developed,65 but the system’s Hamiltonian in those
coordinates is complicated. A different approach is to use row-
orthonormal hyperspherical coordinates.65,66 For triatomic
systems these two kinds of coordinates are related in a very
simple manner64,65 but for tetraatomic systems this relation is
significantly more complex.65 In spite of this, the Hamiltonian
in row-orthonormal coordinates is relatively simple both for
triatomic systems67 and for tetraatomic ones,68 and its terms
display useful invariance properties under kinematic rotations
and symmetry operations. The purpose of this paper is to derive
this Hamiltonian and its properties. A summary of some of
the results have been given previously.68 Recently, a related
set of hyperspherical coordinates and the associated Hamiltonian
has also been proposed.69

In section 2 we define row-orthonormal hyperspherical
coordinates forN -atom systems. In section 3 the transformation
properties of these coordinates under kinematic rotations and
symmetry operations are examined. This is followed in section
4 by a derivation of the Hamiltonian of such systems, of the
associated volume element, and of the Hamiltonian’s transfor-
mation properties. In section 5 we discuss the continuity
conditions for the system’s eigenfunctions with and without
inclusion of the geometric phase effect, and in section 6 we
summarize the results.X Abstract published inAdVance ACS Abstracts,August 1, 1997.
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2. Row-Orthonormal Hyperspherical Coordinates for
N-Atom Systems

We will consider in this section the general caseN g 3 and
particularize it toN ) 4 in later sections. The definitions of
quantities of interest and their properties have been given in
detail elsewhere65,67 and will only be summarized here.
2.1. Jacobi Matrices and Their Products. Let the nuclei

of the atoms comprising the system bePi and the corresponding
nuclear masses bemi ) (i ) 1, 2 ...,N). We locate them in
physical space byN Jacobi vectorsRG, r′λ(1), ..., r′λ(N-1), where
RG is the position vector of the center of massG of the system
of nuclei with respect to a space-fixed originO, {r′λ(j)|j ) 1, 2,
...,N - 1} is a set of relative position vectors of the centers of
mass of the nuclei for a clustering schemeλ65,67 and r′λ(N-1)

passes throughG. Associated with these vectors and masses
we define another set of massesµ, µλ

(1), µλ
(2), ..., µλ

(N-1) and
define the Jacobi mass-scaled coordinates by65,70,71

where µ is an effective reduced mass of the system and is
independent of the clustering schemeλ. The kinetic energy
operatorŤ of the total relative motion of the nuclei is given in
terms of these mass-scaled coordinates by

We now define the 3× (N - 1) Jacobi matrix72

wherexλ1(j) ≡ xλ
(j), xλ2

(j) ≡ yλ
(j), andxλ3

(j) ≡ zλ
(j) are the components

of rλ
(j) in either of the space-fixed Cartesian framesOxyz≡

Ox1x2x3 or Gxyz≡ Gx1x2x3 whose corresponding axes have
parallel directions and equal senses. Ifν is another clustering
scheme, the correspondingFν

sf is related toFν
sf by

whereNλν is an (N- 1) -dimensional orthogonal square matrix
whose elements depend only on the masses of the atoms and
the clustering schemesλ andν. As a result of the orthogonality
of Nλν, theλ f ν mass-scaled Jacobi coordinate transformation
is called a kinematic rotation.73 We can, without loss of
generality, restrict ourselves to kinematic rotations which are
proper, i.e., for which the determinant ofNλν is+1. As a result
of (2.4), the right-hand side of (2.2) isλ-independent, as is the
hyperradiusF g 0. It is useful to introduce the products of
Jacobi matrices65

and

Ã means the transpose of matrixA, Sλ is a symmetric square
matrix of dimensions (N - 1), andK is a 3× 3 non-negative
definite symmetric square matrix. The elements ofSλ are the
scalar productsr λ

(j)‚r λ
(k) and it is called the scalar product

matrix.65 The matrixK is related to the system’s moment of

inertia tensorI by74

(whereI is the 3× 3 identity matrix) and is called the moment
of inertia product matrix.
Under kinematic rotationsSλ transforms according to the

similarity transformation

and is invariant under space rotations. On the other hand,K
displays a reverse behavior, i.e., it is invariant under kinematic
rotations and changes according to a similarity transformation
to a matrixKh under space rotations.65,67 As a result of these
properties the following relations can be easily derived:

where detA and trA mean respectively the determinant and
the trace of the square matrixA.
The eigenvaluesK1,K2, andK3 of K are real and non-negative

and are placed for subsequent convenience in the order

In view of the kinematic rotation invariance ofK and of (2.12)
and (2.13), we may define theλ-independent moment of inertia
hyperanglesθ andφ by

where75

2.2. Row-Orthonormal Form of Jacobi Matrices and
Row-Orthonormal Hyperspherical Coordinates. ForNg 4
the number of columns ofFλ

sf is equal to or greater than the
number 3 of its rows and can be, according to the singular value
decomposition theorem for real matrices,76,77 put in the form

whereAλ is a 3× 3 orthogonal matrix,B is the diagonal matrix
whose diagonal elements areK1

1/2, K2
1/2, andK3

1/2 respectively,
andQλ is a 3× (N - 1) row-orthogonal matrix. When theKi

are all different, the matricesAλ, B, andQλ are essentially
unique once the ordering (2.13) is adopted; the slight lack of
uniqueness is discussed in section 3. The determinant ofAλ
can be+1 or-1, i.e.,Aλ can be proper or improper. OnceAλ

has been determined fromFλ
sf, one can define an associated

properorthogonal matrixA′λ by

r λ
(j) ) [µλ

(j)/µ]1/2r ′λ
(j) (2.1)

T̂) -(p2/2µ)∑
j)1

N-1

∇rλ
(j)
2 (2.2)

Fλ
sf ) (r λ

(1)r λ
(2) ... r λ

(N-1)) ) (xλ1
(1) xλ1

(2) ... xλ1
(N-1)

xλ2
(1) xλ2

(2) ... xλ2
(N-1)

xλ3
(1) xλ3

(2) ... xλ3
(N-1)) (2.3)

Fν
sf ) Fλ

sfNλν (2.4)

Sλ ) F̃λ
sf Fλ

sf (2.5)

K ) Fλ
sf F̃λ

sf (2.6)

I ) µ(F2I - K) (2.7)

Sν ) Ñλν SλNλν (2.8)

detSν ) detSλ (2.9)

tr Sν ) tr Sλ ) F2 (2.10)

detKh ) detK (2.11)

tr Kh ) tr K ) F2 (2.12)

K3 g K1 g K2 g 0 (2.13)

K1
1/2 ) F sinθ cosφ (2.14)

K2
1/2 ) F sinθ sinφ (2.15)

K3
1/2 ) F cosθ (2.16)

0e φ e π/4 (2.17)

0e θ e arcsin [1/(1+ cos2φ)1/2] e arcsin(23)
1/2

= 54.7°

(2.18)

Fλ
sf ) AλBQλ (2.19)
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in terms of whichFλ
sf becomes

whereøλ is 0 if det Aλ ) +1 and 1 if detAλ ) -1. The
matrices ofA′λ, B, andQλ can be expressed in terms of row-
orthonormal hyperspherical coordinates as

The anglesaλ, bλ, andcλ are the Euler angles which rotate the
space-fixed frameGxyz to the principal-axes-of-inertia body-
fixed frameGxIλyIλzIλ, andR (aλ,bλ,cλ) is the corresponding
proper rotation matrix.78 Although the directions of the axes
of the body-fixed frame areλ-independent, their senses, as
shown in section 3.2 forN) 4, are generally not. These Euler
angles have the usual ranges of definition

In addition, {δλ
(i)|i ) 1, 2, ..., 3N - 9} is a set of internal

configuration space hyperangles andQ is a 3× (N - 1) row-
orthonormal matrix, i.e., satisfies the condition

For tetraatomic systems,Q depends on three internal hyper-
anglesδλ

(1), δλ
(2), andδλ

(3) and can be chosen to be the proper
three-dimensional square orthogonal matrix

For such systemsFλ
sf is a 3× 3 square matrix and (2.21) can be

rewritten as

with

where the sign of zero is considered to be+. This ø has been
written without the indexλ because it is invariant under proper
kinematic rotations sinceFλ

sf and Fν
sf have equal determi-

nants, as can be seen from (2.4). Its value is 0 (1) ifr λ
(1),

r λ
(2), and r λ

(3) comprise a right-handed (left-handed) set of
vectors. ForN ) 3 (i.e., triatomic systems),Fλ

sf has dimen-
sions 3× 2 and the singular value decomposition theorem is
still valid with ø ) 0,Qλ being now a row-orthogonal but not
row-orthonormal matrix. This special case has been considered
in detail previously.67

Equation 2.21, withA′λ, B, andQλ given by (2.22) through
(2.24) is called65,67 the row-orthonormal form of the Jacobi
matrix Fλ

sf. The method used previously to arrive at it65 was
essentially a rederivation of the singular value decomposition
theorem. The quantitiesaλ, bλ, cλ, ø, F, θ, φ, δ(1), δλ

(2), ...,
δλ
(3N-9) are called theλ row-orthonormal hyperspherical coor-
dinates of theN-atom system. They consist of the chirality
coordinateø, the hyperradiusF, and 3N - 4 angles of which

three are the “external” Euler anglesaλ ≡ (aλ,bλ,cλ) andθ,φ,δλ

≡ (δλ
(1(,δλ

(2),...,δλ
(3N-9)) are 3N - 7 “internal” hyperangles

(which reduce to two anglesθ and δλ for triatomic systems
since in this caseφ ) 0 and this angle does not count as a
coordinate butQ still depends on the one internal hyperangle
δλ

67). In the Born-Oppenheimer single electronically-adiabatic
state approximation, the corresponding potential energy function
Vλ is independent ofø andaλ but depends onF and on the set
of internal hyperanglesθ,φ,δλ.
The ranges of theδλ

(i) appearing in (2.24) are determined by
the requirement that for general geometries of the system (which
exclude some special geometries as discussed in section 5 for
tetraatomic systems) the correspondence between theλ row-
orthonormal hyperspherical coordinates andFλ

sf be one-to-one.
For tetraatomic systems, (2.27) limits the ranges of theδλ

(i) (i )
1, 2, 3) to

However, this one-to-one correspondence, as shown in section
3.1, further limits these ranges to79

Once this one-to-one correspondence betweenFλ
sf and the

total set of hyperspherical coordinatesaλ, ø, F, θ, φ, δλ is
established, a similar one-to-one correspondence results between
the scalar product matrixSλ and the internal hyperspherical
coordinatesF, θ, φ, δλ, except for some special geometries, as
discussed in section 5.

3. Transformation Properties of Row-Orthonormal
Hyperspherical Coordinates for Tetraatomic Systems

In this section we determine the ranges of theδλ
(i) hyper-

angles and describe how row-orthonormal hyperspherical co-
ordinates for tetraatomic systems transform under kinematic
rotations, inversion through the system’s center of mass, and
permutation of identical particles.
3.1. The Ranges of the Hyperanglesδλ. Given Fλ

sf (i.e.,
r λ
(1), r λ

(2), and r λ
(3)), (2.29) furnishesø uniquely. As a result,

(2.28) can be considered as a system of nine scalar equations
in the nine unknownsaλ, F, θ, φ, δλ. It was possible to solve
the corresponding equations for triatomic systems explicitly (see
sections 4.1 and 4.2 of ref 67). For the tetraatomic case, the
(analytical) solution of (2.28) is very cumbersome. Neverthe-
less, as stated in the next-to-the-last paragraph of section 2.2,
the ranges of these tetraatomic hyperspherical coordinates can
be determined from the requirement of a one-to-one cor-
respondence between them andFλ

sf, taking (2.28) to be an
implicit definition of these coordinates.
As stated in section 2.2, the matricesAλ, B,Qλ which appear

in (2.19), and as a result the matrixA′λ of (2.20), are essentially
unique as long as the eigenvalues of (2.6) are nondegenerate
and placed in a specific order, such as (2.13). The only lack of
uniqueness are phase factors equal to+1 or-1 for the columns
of A′λ and rows ofQλ. Indeed, letI j (j ) 1, 2, 3) be the 3× 3
diagonal matrices defined by

These matrices have the properties

A′λ ) Aλ detAλ (2.20)

Fλ
sf ) (-1)øλA′λBQλ (2.21)

A′λ ) R̃ (aλ,bλ,cλ) (2.22)

B ) FN (θφ) ) F (sinθ cosφ 0 0
0 sinθ sinφ 0
0 0 cosθ ) (2.23)

Qλ ) Q (δλ
(1), δλ

(2), ...,δλ
(3N-9)) (2.24)

0e aλ,cλ < 2π 0e bλ e π (2.25)

Q Q̃ ) I (2.26)

Q ) R̃ (δλ
(1),δλ

(2),δλ
(3)) (2.27)

Fλ
sf ) (-1)ø R̃ (aλ,bλ,cλ) FN (θ,φ) R̃ (δλ

(1),δλ
(2),δλ

(3)) (2.28)

(-1)ø ) sign (rλ
(1)× rλ

(2) ‚ rλ
(3)) ) sign detFλ

sf (2.29)

0e δλ
(1),δλ

(3) < 2π 0e δλ
(2) e π (2.30)

0e δλ
(1),δλ

(3) < π 0e δλ
(2) e π (2.31)

I1 ) (1 0 0
0 -1 0
0 0 -1) I2 ) (-1 0 0

0 1 0
0 0 -1) I3 ) (-1 0 0

0 -1 0
0 0 1)

(3.1)
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The diagonality ofB allows their insertion into (2.21) as

All four right-hand sides of (2.21) and (3.3) are equal. We now
define the matricesA′λ andQλj by

TheA′λj are 3× 3 proper orthogonal matrices, and theQλj are
3× (N - 1) row-orthonormal matrices. The four matricesA′λ
andA′λj are distinct as areQλ andQλj. This leads to the lack of
uniqueness mentioned above and is applicable for arbitraryN
g 3.
For the tetraatomic case, (3.4) becomes

We can easily express theaλj in terms ofaλ and theδλj in terms
of δλ by equating the third row and column elements of the
right- and left-hand sides of (3.5). The result is

If the δλ
(i) are permitted to assume arbitrary values in the ranges

defined by (2.30), the generally distinct four sets of row-
orthonormal coordinatesaλ, ø, F, θ, φ, δλ andaλj, ø, F, θ, φ, δλj
(j ) 1, 2, 3) furnish the same Jacobi matrixFλ

sf, leading to a 4
to 1 correspondence betweenFλ

sf and distinct sets of hyper-
spherical coordinates. This can be reduced to a one-to-one
correspondence by restricting the allowed ranges of theδλ

(i), as
the following analysis indicates.
Let us consider aδλ space whose Cartesian coordinate axes

are Oδλ
(1), Oδλ

(2), Oδλ
(3). Equations (2.30) define a paral-

lelopiped in this space, which can be partitioned into four cubes
C, Cj (j ) 1, 2, 3) whose edges have lengthπ, as indicated in
Figure 1. As we allow a point P≡ (δλ

(1),δλ
(2),δλ

(3)) to scan the
internal region of cube C, points Pj ≡ (δλ

(1),δλ
(2),δλ

(3)) scan the
internal regions of cubes Cj. Therefore, we must limit the range
of theδλ

(j) to that of cube C. Consideration of the surface of C
indicates that points on itsδλ

(1) ) π and δλ
(3) ) π faces,

including the corresponding edges, should be omitted, whereas
points on all other faces and edges should be allowed. These
results are expressed by (2.31). The ranges ofø, F, θ, φ, and
the aλ are still those given byø ) 0, 1, F g 0, and (2.17),
(2.18), and (2.25). These ranges span all possibleFλ

sf, and
reciprocally,Fλ

sf spans these ranges. Although, for a given set
of such row-orthonormal hyperspherical coordinates, a single

Fλ
sf is obtained, it should be remembered that for some special
geometries of the four-particle system more than one set of
hyperspherical coordinates satisfying (2.31) can be obtained (see
section 5). As a result, when using these coordinates for solving
scattering problems, special attention should be paid to these
geometries.
3.2. Kinematic Rotations. We will now derive the effect

of kinematic rotations on the row-orthonormal hyperspherical
coordinates for tetraatomic systems. For triatomic systems, it
was possible to obtain this effect by using one of two methods:
67 one based on the explicit dependence of such coordinates on
Fλ
sf and the other based on the implicit dependence described
by the expression forFλ

sf as a function of those coordinates. For
tetraatomic systems only the implicit method will be used since,
as mentioned at the beginning of section 3.1, the explicit
dependence is very cumbersome.
We already showed, after (2.29), thatø is invariant under

proper kinematic rotations. The matrixK defined by (2.6) is
also invariant under such rotations65,67 and, therefore, so are
the F, θ, φ coordinates given by (2.14) through (2.16).
Replacing (2.28) and itsν counterpart into (2.4) and using these
kinematic-rotation-invariant properties results in

We know that the directions of the principal axes of inertia are
determined by the positions of the four particles and are invariant
under kinematic rotations. Since both principal axes frames
GxIλyIλzIλ andGxIνyIνzIν must have the same right-handedness
as the space-fixed frame, either none or two of the senses of
the Iν axes can differ from the correspondingIλ ones. As a
result, we must have

whereI j (j ) 0, ..., 3) stands for the identity matrix forj ) 0
and the matrices defined by (3.1) forj ) 1, 2, 3. Replacement
of (3.10) into (3.9) leads to

This equation has a solution in the range (2.30) for each of the
values ofj. However, from considerations similar to those in
the last paragraph of section 3.1 we are assured that one and
only one of these lies in the range (2.31). In this mannerδλ

I j
2 ) I detI j ) +1 j ) 1, 2, 3 (3.2)

Fλ
sf ) (-1)øλ A′λI jBI jQλ

j ) 1,2,3 (3.3)

A′λj ) A′λI j Qλj
) I jQλ j ) 1,2,3 (3.4)

R̃(aλj
) ) R̃(aλ)I j R̃(δλj

) ) I jR̃(δλ) (3.5)

aλ1
) ((π + aλ) mod 2π,π - bλ, (π - cλ) mod 2π)

δλ1
) ((2π - δλ

(1)) mod 2π,π - δλ
(2), (π + δλ

(3)) mod 2π)

(3.6)

aλ2
) ((π + aλ) mod 2π,π - bλ, (2π - cλ) mod 2π)

δλ2
) ((π - δλ

(1)) mod 2π,π - δλ
(2), (π + δλ

(3)) mod 2π)

(3.7)

aλ3
) (aλ,bλ, (π + cλ) mod 2π)

δλ3
) ((π + δλ

(1)) mod 2π, δλ
(2),δλ

(3)) (3.8)

Figure 1. Ranges of definition of theδλ
(i) (i ) 1, 2, 3) row-

orthonormal hyperspherical coordinates for tetraatomic systems. The
set of cubes C, Cj (j ) 1, 2, 3) yields a 1 to 4correspondence between
Jacobi matricesFλ

sf and sets of such coordinates. Limiting their range
to that of cube C (see (2.31) and section 3.1) makes this correspondence
become 1 to 1, except for the special geometries considered in section
5.

R̃ (aν) N (θ,φ) R̃ (δν) ) R̃ (aλ) N (θ,φ) R̃ (δλ) Nλν (3.9)

R (aν) ) I jR (aλ) (3.10)

R̃ (δν) ) I j R̃ (δλ) Nλν (3.11)
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andNλν together with (3.11) uniquely determinej andδν, and
use of (3.10) and a knowledge ofj andaλ uniquely determine
aν.
All four matricesI j can be put in the form

wherenλν
(1) andnλν

(3) are 0 or 1 and depend onδλ in a stepwise
manner. Their relation toj is given in Table 1. We now define
δhν as the unique solution of

in range (2.30). In Table 2 we givenλν
(1), nλν

(3), andδν in terms of
this δhν.
In Table 3, we give the values foraν in terms ofnλν

(1), nλν
(3),

andaλ, as well as the senses of theGxIνyIνzIν axes in terms of
those ofGxIνyIνzIν as the plus or minus signs according to

3.3. Inversion through the Center of Mass. Let us now
consider the effect of inverting the tetraatomic system through
its center of mass. Representing the inversion operator byû,
we have

From this expression we get

and, in view of (2.29)

As a result of (2.5) and (3.15)K is inversion-invariant, and
in view of (2.14) through (2.16), so areF,θ,φ

Furthermore, (2.7) shows thatK determines the moment of
tensorI and therefore the directions of the principal axes of
inertia, but not their senses. Those directions are therefore
inversion-invariant, and since the senses of either none or two
of the axes of theû(GxIλyIλzIλ) frame can be different from
those of theGxIλyIλzIλ frame, we must have, in analogy with
(4.10)

We now write

Replacement of (2.28), (3.19), and (3.20) into (3.15) and use
of (3.17) and (3.18) leads to

Similarly to (3.11), (3.21) has a solution in the range (2.31)
for one and one only of the four possible values ofj, and that
solution is

corresponding toj ) 0. When replaced in (3.19), it yields

We conclude thatû changes the chirality of the system, while
leaving the remaining row-orthonormal hyperspherical coordi-
nates unchanged.
3.4. Permutations of Identical Nuclei. Of the four nuclei

Pi (i ) 1, ..., 4) comprising the tetraatomic system, all, some,
or none can be identical. We should therefore consider the four
kinds of systems A4, A3B, A2B2, A2BC and ABCD, where A
through D stand for distinct nuclei. Possible examples are the
H4, H2OH, H2O2, HOCO, and HOCN, respectively. It is useful
to determine the effect of the permutations of identical Pi on
the row-orthonormal hyperspherical coordinates for the purpose
of decoupling the associated nuclear motion equationssscattering
or boundsaccording to the irreducible representations of the
corresponding permutation groups.
Generally speaking we have either no, one, or two sets of

identical particles: ABCD; A4,A3B and A2BC; and A2B2,
respectively. For the ABCD case, no permutations are consid-
ered. For A4, A3B, and A2BC we consider the permutations
comprising theS4, S3, andS2 permutation groups, respectively.80

Finally, for A2B2 we must consider the direct product group
S2XS2. For the sake of brevity, we will only discuss explicitly
the A3B case, appropriate for the H2OH system; generalization
to the other cases is however straightforward.
Let the nucleiP1, P2, andP3 be identical to each other and

distinct from P4. We define theλ ) 1 arrangement Jacobi
coordinates as the one in whichr ′1(1) is the vector fromP1 to
P2, r ′1(2) that from the center of mass of theP1, P2 pair toP3
and r ′1(3) the one connecting the center-of-mass of theP1P2P3
triplet toP4. We will consider the effect of theS3 permutations
on the correspondingF1

sf Jacobi matrix. This group is isomor-
phic with the point groupC3 V of an equilateral triangle.81 For
this reason it is convenient to use the notation

TABLE 1: Relation between j and nλν
(1), nλν

(3)

j nλν
(1) nλν

(1)

0 0 0
1 0 1
2 1 1
3 1 0

TABLE 2: Relation between nλν
(1), nλν

(3), δν, and δhν

nλν
(1) nλν

(3) δν
(1) δν

(2) δν
(3)

0e δhν
(3) e π 0e δhν

(1) e π 0 0 δhν
(1) δhν

(2) δhν
(3)

π < δhν
(1) < 2π 1 0 δhν

(1) - π δhν
(2) δh(3)

π < δhν
(3) < 2π 0e δhν

(1) e π 1 1 π - δhν
(1) π - δhν

(2) δhν
(3) - π

π < δhν
(1) < 2π 0 1 2π - δhν

(1) π - δhν
(2) δhν

(3) - π

TABLE 3: Relation between aν and nλν
(1), nλν

(3), and aλ and the
Senses of theGxIνyIνzIν Axes in Terms of Those of
GxIλGyIλGzIλ

nλν
(1) nλν

(3) aν
a bν cν

a GxIν GyIν GzIν

0 0 aλ bλ cλ + + +
1 0 aλ bλ π + cλ - - +
1 1 π + aλ π - bλ π - cλ - + -
0 1 π + aλ π - bλ 2π - cλ + - -
a The relations between theν andλ Euler angles are given modulo

2π.

I j ) Inλν
(1)nλν

(3) ) ((-1)nλν
(1)

0 0

0 (-1)nλν
(1)+nλν

(3)
0

0 0 (-1)nλν
(3) ) (3.12)

R̃ (δhν) ) R̃ (δλ) Nλν (3.13)

GxIν ) (-1)nλν
(1)

GxIλ

GyIν ) (-1)nλν
(1)+nλν

(3)

GyIλ

GzIν ) (-1)nλν
(3)

GzIλ (3.14)

ûFλ
sf ) -Fλ

sf (3.15)

det(ûFλ
sf) ) -detFλ

sf (3.16)

(ûø) ) ø + 1 mod2 (3.17)

û(F,θ,φ) ) F,θ,φ (3.18)

R(ûaλ) ) I jR (aλ) (3.19)

ûFsf ) (-1)ûø R̃(ûaλ) (ûF) N(ûθ,ûφ) R̃(ûδλ) (3.20)

R̃(ûδλ) ) I jR̃(δλ) (3.21)

ûδλ ) δλ (3.22)

ûaλ ) aλ (3.23)
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where the permutation

replaces 1 byi, 2 by j, and 3 byk, with i,j,k being an arbitrary
permutation of 1,2,3. The permutationsÊ, Ĉ+, and Ĉ- have
even parity andσ̂1, σ̂2, and σ̂3 have odd parity. We will
designate a general operation ofS3 or C3V by ĝ. The effect of
ĝ on F1

sf can be written as

whereNĝ is a 3× 3 orthogonal matrix given by82

where (-1)g ) +1 for the even parityĝ and (-1)g ) -1 for
the odd parityĝ. The anglesâĝ are defined by

Equations 3.25 through 3.27 result from the definition of the
r λ
(i) for λ ) 1 and the fact thatP1, P2, and P3 have equal
masses. We see from (3.26) that

and therefore thatNĝ is proper (improper) for even (odd) parity
ĝ.
Replacement of (3.25) into (2.6) shows thatK is invariant

under all ĝ and therefore thatF, θ, andφ are unaffected by
these operations:

To determine the effect ofĝ on ø we use (2.29), itsĝF1
sf

counterpart and (3.28). The result is

which means that even (odd) permutationsĝ do not (do) change
the chirality coordinateø. To obtain the effect ofĝ on δ1 and
a1 we use (2.28) withλ ) 1 and its ĝF1

sf counterpart and
proceed as in section 3.2, remembering that permutations of
identical nuclei cannot change the directions of the principal
axes of inertia. The result is

whereIng̃(1)ng̃(3) is given by (3.12) with the subscriptsλν replaced
by ĝ. The two expressions above yield

From these equations, valid for allĝ, we obtain the values of
(-1)n(1)ĝ and (-1)n(3)ĝ given in Table 4 and the following
detailed expressions forĝδ1 and ĝa1:

Ê≡ (1 2 3
1 2 3) σ̂1≡ (1 2 3

1 3 2) σ̂2≡ (1 2 3
3 2 1)

σ̂3≡ (1 2 3
2 1 3) Ĉ+ ≡ (1 2 3

2 3 1) Ĉ- ≡ (1 2 3
3 1 2) (3.24)

(1 2 3
i j k )

ĝF1
sf ) F1

sfNĝ (3.25)

Nĝ ) ((-1)g cosâĝ
sinâĝ 0

-(-1)g sinâĝ
cosâĝ 0

0 0 1
) (3.26)

âÊ ) âσ̂3
) 0 âĈ+ ) âσ̂1

) 2π
3

âĈ- ) âσ̂2
) 4π

3
(3.27)

detNĝ ) (-1)g (3.28)

ĝ(F,θ,φ) ) (F,θ,φ) (3.29)

ĝø ) ø + gmod2 (3.30)

R (ĝδ1) ) (-1)g ÑĝR (δ1) Inĝ(1)nĝ(3) (3.31)

R (ĝa1) ) Inx̂(1)nĝ(3) R (a1) (3.32)

(-1)nĝ
(1)

) sign sin(δ1
(3) - âĝ) (-1)nĝ

(3)

) (-1)nĝ
(1)+g (3.33)

cos(ĝδ1
(1)) ) (-1)nĝ

(3)

cosδ1
(1) sin(ĝδ1

(1)) ) sinδ1
(1) (3.34)

cos(ĝδ1
(2)) ) (-1)nĝ

(1)

cosδ1
(2) sin(ĝδ1

(2)) ) sinδ1
(2) (3.35)

cos(ĝδ1
(3)) ) (-1)nĝ

(3)

cos (δ1
(3) - âĝ)

sin(ĝδ1
(3)) ) (-1)nĝ

(1)

sin(δ1
(3) - âĝ) (3.36)

Êδ1 ) δ1 Êa1 ) a1 (3.37)

σ̂1δ1 ) {(δ1
(1),π - δ1

(2),
2π
3

- δ1
(3)) for 0e δ1

(3) e
2π
3

(π - δ1
(1),δ1

(2),
5π
3

- δ1
(3)) for

2π
3

< δ1
(3) < π

(3.38)

σ̂1â1 )

{(a1,b1,(π + c1) mod2π) for 0e δ1
(3) e

2π
3

((π + a1) mod2π,π - b1,(2π - c1) mod 2π) for
2π
3

< δ1
(3) < π

(3.39)

σ̂2δ1 ) {(π - δ1
(1),δ1

(2),
π
3

- δ1
(3)) for 0e δ1

(3) e
π
3

(δ1
(1),π - δ1

(2),
4π
3

- δ1
(3)) for

π
3

< δ1
(3) < π

(3.40)

σ̂2a1 )

{((π + a1) mod2π,π - b1,(2π - c1) mod2π) for 0e δ1
(3) e

π
3

(a1,b1,(π + c1) mod2π) for
π
3

< δ1
(3) < π

(3.41)

σ̂3δ1 ) (π - δ1
(1),δ1

(2),π - δ1
(3)) (3.42)

σ̂3a1 ) ((π + a1) mod2π,π - b1, (2π - c1) mod2π) (3.43)

Ĉ+δ1 )

{(π - δ1
(1),π - δ1

(2),
π
3

+ δ1
(3)) for 0e δ1

(3) < 2π
3

(δ1
(1),δ1

(2),δ1
(3) - 2π

3 ) for
2π
3

e δ1
(3) e π

(3.44)

Ĉ+a1 )

{((π + a1) mod2π,π - b1,(2π - c1) mod2π) for 0e δ1
(3) < 2π

3

(a1,b1,c1) for
2π
3

e δ1
(3) < π

(3.45)

Ĉ-δ1 )

{(δ1
(1),δ1

(2),
2π
3

+ δ1
(3)) for 0e δ1

(3) < 2π
3

(π - δ1
(1),π - δ1

(2),δ1
(3) - π

3) for
π
3

e δ1
(3) < π

(3.46)

Ĉ-a1 )

{(a1,b1,c1) for 0e δ1
(3) < π

3

((π + a1) mod2π,π - b1,(π - c1) mod2π) for
π
3

e δ1
(3) < π

(3.47)
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These results are relatively simple and bear a close resemblance
to the corresponding ones in ref 67. The reason for this
simplicity is the ordering ofr1

(1), r1
(2), and r1

(3) adopted in
(2.3).72

4. The Hamiltonian for Tetraatomic Systems and Its
Transformation Properties

We now derive the nuclear motion Hamiltonian operator for
tetraatomic systems in row-orthonormal hyperspherical coor-
dinates as well as the corresponding volume element and
transformation properties under the symmetry operations of the
system.
4.1. The Hamiltonian. We assume that all matrix elements

of the first and second derivative operators in the electronically-
adiabatic representation vanish and therefore that the motion
of the nuclei occurs on a single electronically-adiabatic potential
energy surfaceV. In addition we neglect spin-containing terms
in the system’s nuclear motion Hamiltonian, which is taken to
be

whereT̂λ is the nuclear motion kinetic energy operator andVλ
depends only on the relative position of the nuclei, and therefore
on F,θ,φ andδλ only. The kinetic energy of the motion of the
center of mass of the system has already been excluded from
T̂λ. The formalism can of course be augmented10 to include
multiple potential energy surfaces, angular momentum coupling
between nuclear and electronic spin and orbital motions, other
relativistic effects, and mass polarization effects, to make it as
accurate as desired. This, however, transcends the objectives
of this paper. Our goal is to obtainT̂λ in row-orthonormal
hyperspherical coordinates for tetraatomic systems and analyze
the properties of the resulting expression.
In analogy to the triatomic case,67 we define the matrix

gradient operator∇λ by

We can expressT̂λ in terms of∇λ as

where, even though the matrix operator∇λ depends onλ, the
scalar operatorT̂λ does not, as can easily be shown from
kinematic rotation transformation property (2.4). From now on
we will drop the subscriptλ on the latter. We will first

determine∇λ and thenT̂. The approach used is very similar in
spirit to the one employed previously by O¨ hrn and Linderberg
to determine the kinetic energy functional for four-particle
systems.66

4.1.1. The Matrix Gradient Operator. The elements of
∇λ are the coefficients of the expansion of the total nine-
dimensional differential operatord̂ in terms of the Cartesian
coordinate differentials

To obtain∇λ in terms of the row-orthonormal hyperspherical
coordinates, we also expandd̂ in terms of the latter, and identify
both expansions. To that effect we writed̂ as

where

It is useful to express the operatord̂1λ in terms of the components
JIλ1,JIλ2,JIλ3 of the nuclear motion angular momentum operator
Ĵ along theGxIλyIλzIλ principal-moment-of-inertia body-fixed
axes. Inverting the relation

we get, as in the triatomic case67

which permits us to rewrite (4.6) as

A comparison of the coefficients of the angular momentum
operators in this expression with the elements of theRdR̃matrix
shows that (4.11) can be written as

TABLE 4: Values of (-1)nĝ
(1)
and (-1)nĝ

(3)

ˆg range ofδ1
(3) (-1)nĝ

(1)

(-1)nĝ
(3)

Ê 0e δ1
(1) < π 1 1

σ̂1 0e δ1
(3) e 2π/3 -1 1

2π/3< δ1
(3) < π 1 -1

σ̂2 0e δ1
(3) e π/3 1 -1

π/3< δ1
(3) < π -1 1

σ̂3 0< δ1
(3) < π 1 -1

C+ 0e δ1
(3) < 2π/3 -1 -1

2π/3e δ1
(3) < π 1 1

C- 0e δ1
(3) < π/3 1 1

π/3e δ1
(3) < π -1 -1

Ĥ ) T̂λ + Vλ(F,θ,φ,δλ) (4.1)

∇λ ) (∂/∂xλ1
(1)
∂/∂xλ1

(2) ... ∂/∂xλ1
(N-1)

∂/∂xλ2
(1)
∂/∂xλ2

(2) ... ∂/∂xλ2
(N-1)

∂/∂xλ3
(1)
∂/∂xλ3

(2) ... ∂/∂xλ3
(N-1)) (4.2)

T̂λ ) - p2

2µ
tr(∇λ ∇̃λ) (4.3)

d̂) ∑
i,j)1

3

dxλi
(j) ∂

∂xλi
(j)

(4.4)

d̂) d̂1λ
+ d̂2 + d̂3λ

(4.5)

d̂1λ
) daλ

∂

∂aλ
+ dθ ∂

∂bλ
+ dcλ

∂

∂cλ
(4.6)

d̂2 ) dF ∂

∂F
+ dbλ

∂

∂θ
+ dφ

∂

∂φ
(4.7)

d̂3λ
) ∑

l)1

3

dδλ
(l) ∂

∂δλ
(l)

(4.8)

(Ĵ1IλĴ2Iλ
Ĵ3
Iλ ) ) p

i
Kλ (∂/∂aλ

∂/∂bλ
∂/∂cλ

) )

p
i (- cscbλ coscλ sincλ cotbλ coscλ
cscbλ sincλ coscλ - cotbλ sincλ

0 0 1 ) (∂/∂aλ
∂/∂bλ
∂/∂cλ

) (4.9)

(∂/∂aλ
∂/∂bλ
∂/∂cλ

) ) i
p (-sinbλ coscλ sinbλ sincλ cosbλ

sincλ coscλ 0
0 0 1 ) (Ĵ1IλĴ2Iλ

Ĵ3
Iλ )
(4.10)

d̂1λ
) p
i
[(- sinbλ coscλdaλ + sincλdbλ) Ĵ1

Iλ +

(sinbλ sincλdaλ + coscλdbλ) Ĵ2
Iλ + (cosbλdaλ + dcλ) Ĵ3

Iλ]

(4.11)

d̂1λ
) -

i

2p
∑
i,j,k)1

3

εijk (RdR̃)ij Ĵk
Iλ (4.12)
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whereεijk is the Levi-Civita density (also called the alternating
tensor, the isotropic tensor of rank 3, or theε-tensor).83,84 This
is a convenient form ofd̂1λ which is valid for allN > 2.
To expressd̂2 and d̂3λ in a more useful form, we take the

differential of (2.28). The result is

whereQ is given by (2.27). Left-multiplying this expression
by R, right-multiplying it by Q̂, and using the orthogonality
property of these matrices we get

Due to that orthogonality, bothRdR̃ and (dQ) Q̃ are skew-
symmetric matrices (of dimensions 3× 3) and as a result their
diagonal elements vanish. On the other hand,FN and therefore
its differential are diagonal matrices. Consequently,

where diagA is a diagonal matrix whose diagonal elements are
equal to the corresponding ones of the square matrixA and off
diagA is a matrix whose diagonal elements vanish and whose
off-diagonal elements are equal to the corresponding ones of
A. The first of these expressions yields a convenient form for
d̂2 and the second one ford̂3λ.
From (4.15) we get

where

and

The matrices N, N′θ, andNφ have the properties

As a consequence, left-multiplying (4.17) byN and taking the
traces of both sides we obtain

Similarly, left-multiplying (4.17) byN′θ or Mφ and taking the
traces of both sides results in

Replacement into (4.7) now furnishes

which is the desired convenient form ford̂2. This form is also
valid for N > 4.
We now consider (4.16), which will permit us to express the

nonvanishing (i.e., off-diagonal) elements of the skew-symmetric
matricesRd R̃ and (dQ) Q̃ in terms of the off-diagonal elements
of R (dFλ

sf) Q̃. Obtaining these expressions is useful becauseR
(dFλ

sf) Q̃ appears ind̂2 (see (4.24)) and as a result it would be
desirable to have this same matrix appear in the expressions
for d̂1λ and d̂3λ. In view of the diagonality ofN, we obtain
from the off-diagonal elements of both sides of (4.16) the
relation

Interchangingi and j in this expression and using the skew-
symmetry ofR (dR̃) and (dQ) Q̃ gives

These two expressions can be considered as a system of two
linear equations in the two quantities [R (dR)] ij and [(dQ) Q̃] ij
which permit us to obtain them in terms of [R (dFλ

sf) Q̃] ij and
[R (dFλ

sf) Q̃] ji as

Replacement of (4.27) into (4.12) results in an expression for
d̂1λ in terms of the matrixR (dFλ

sf) Q̃ and the operatorsJk
Iλ. In

view of (2.28), δλ should play a similar role to that ofaλ.
Therefore, associated toδλ we wish to define a hyperangular
momentum vector operatorL̂ λ with componentsL̂λ1,L̂λ2,L̂λ3. We
must notice, however, that whereas from (4.27) we get [R (aλ)
d R̃ (aλ)] ij, from (4.28) we get{[dQ (δλ)] Q̃ (δλ)}ij, which, in
view of (2.27), is the same as{[d R̃ (δλ)]R (δλ)}ij. The matrices
RdR̃ and (dR̃) R are different sinceR is not symmetric. As a
result, a useful definition ofL̂ λ in terms ofδλ should have a
form for which, after an expression ford̂3λ similar to (4.12) is
obtained, the elements of (dR̃) R (i.e., (dQ) Q̃) appear rather
than those ofRd R̃. This objective can be accomplished if,
rather than the body-fixed components ofĴIλ used in (4.9), we
introduce thespace-fixed typecomponents ofL λ defined by85

dFλ
sf ) (-1)ø[(dR̃)FNQ + R̃ d(FN)Q + R̃ FNdQ] (4.13)

R (dFλ
sf) Q̃ ) (-1)ø [R(dR̃)FN + d(FN) + FN(dQ)Q̃]

(4.14)

d(FN) ) (-1)ø diag[R(dFλ
sf) Q̃] (4.15)

R(dR̃) FN + FN(dQ)Q̃ ) (-1)ø off diag[R(dFλ
sf) Q̃] (4.16)

NdF + FN′θdθ + F sinθMφdφ ) (-1)ø diag[R(dFλ
sf) Q̃]
(4.17)

N′θ (θ,φ) ) ∂N
∂θ

) (cosθ cosφ 0 0
0 cosθ sinφ 0
0 0 -sinθ ) (4.18)

Mφ(φ) ) 1
sinθ

∂N
∂φ

) (-sinφ 0 0
0 cosφ 0
0 0 0) (4.19)

trN2 ) trN′θ
2 ) trMφ

2 ) 1

trNN′θ ) trNMφ ) trN′θMφ ) 0 (4.20)

dF ) (-1)ø ∑
i,j)1

3

Nii[R (dFλ
sf) Q̃] ii ) ∑

i,j)1

3

Nij[R (dFλ
sf) Q̃] ij

(4.21)

dθ ) (-1)ø
1

F
∑
i,j)1

3

N′θij[R (dFλ
sf) Q̃] ij (4.22)

dφ ) (-1)ø
1

F sinθ
∑
i,j)1

3

Mφij
[R (dFλ

sf) Q̃] ij (4.23)

d̂2 )

(-1)ø ∑
i,j)1

3

[R (dFλ
sf) Q̃] ij[Nij

∂

∂F
+ N′θij

1

F

∂

∂θ
+ Mφij

1

F sinθ

∂

∂φ]
(4.24)

[RdR̃] ijFNjj + FNii[(dQ)Q̃] ij ) (-1)ø[R (dFλ
sf)Q̃] ij

i * j (4.25)

-[RdR̃] ijFNii - FNjj[(dQ)Q̃] ij ) (-1)ø[R(dFλ
sf)Q̃] ji

i * j (4.26)

[RdR̃] ij )
(-1)ø

F(Njj
2 - Nii

2)
{Njj[R(dFλ

sf)Q̃] ij + Nii[R(dFλ
sf)Q̃] ji}

i * j (4.27)

[(dQ)Q̃] ij )

-
(-1)ø

F(Njj
2 - Nii

2)
{Nii[R(dFλ

sf)Q̃] ij + Njj[R(dFλ
sf)Q̃] ji}

i * j (4.28)
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which, upon inversion, yields

The difference between the body-fixed character ofĴIλ and the
space-fixed character ofL̂ λ as encompassed in (4.9) and (4.29),
respectively, is important and stems from the fact that theR̃
(aλ) in (2.28) appears at the left ofN, whereasR̃(δλ) appears at
its right. Substituting (4.30) into (4.8) we get

As for (4.11), a comparison of the coefficients of theL̂λk (k )
1, 2, 3) in this expression with the elements of the (dQ) Q̃matrix
shows that (4.31) can be rewritten as

where the [(dQ)Q̃] ij are given by (4.28). Equation 4.32 has
the same structure as (4.12).
We now replace (4.27) into (4.12) and (4.28) into (4.32) and

the resulting equations, together with (4.24), into (4.5). After
some simple algebraic manipulations we get the important
expression

The quantityεijk/(Njj
2 - Nii

2) which appears in (4.33) vanishes
by definition (as doesεijk) for i ) j. We now write the elements
of R (dFλ

sf) Q̃ explicitly as

Replacing (4.34) into (4.33) and identifying the coefficients of
the Cartesian differentials in the resulting expression with those
in (4.4) yields the elements of the matrix gradient operator∇λ
defined by (4.2). The final result can be expressed as

whereÂ is a 3× 3 diagonal matrix operator defined by

and P̂λ is a 3× 3 matrix operator given by

with

It is possible to put (4.38) and (4.39) in matrix operator form
with the help of the matrix operatorÂB̂ defined by

whereB̂ is a column vector operator with componentsB̂1, B̂2,
and B̂3. This matrix operator is symmetric and its diagonal
elements vanish. It is given explicitly by

In terms of it (4.38) and (4.39) can be expressed as

Great care must be taken in manipulating this last expression
since if B̂ (x) is a matrix of operators which act on variablex
andC (x) is another matrix which depends onx, then in general

whereψ (x) is a scalar function ofx. TreatingB̂C as a matrix

(L̂λ1
L̂λ2
L̂λ3

) ) p
i

Pλ (∂/∂δλ
(1)

∂/∂δλ
(2)

∂/∂δλ
(3)) )

p
i (-cosδλ

(1) cotδλ
(2) - sinδλ

(1) cosδλ
(1) cscδλ

(2)

-sinδλ
(1) cotδλ

(2) cosδλ
(1) sinδλ

(1) cscδλ
(2)

1 0 0
) (∂/∂δλ

(1)

∂/∂δλ
(2)

∂/∂δλ
(3))

(4.29)

(∂/∂δλ
(1)

∂/∂δλ
(2)

∂/∂δλ
(3)) )

i
p (0 0 1

- sinδλ
(1) cosδλ

(1) 0

cosδλ
(1) sinδλ

(2) sinδλ
(1) sinδλ

(2) cosδλ
(2)) (L̂λ1

L̂λ2
L̂λ3

) (4.30q)

d̂3λ
) p
i
[(-sinδλ

(1) dδλ
(2) + cosδλ

(1) sinδλ
(2) dδλ

(3))L̂λ1
+

(cosδλ
(2)dδλ

(2) + sinδλ
(1) sinδλ

(2)dδλ
(3))L̂λ2

+

(dδλ
(1) + cosδλ

(2)dδλ
(3))L̂λ3

] (4.31)

d̂3λ
) -

i

2p
∑
i,j,k)1

3

εijk[(dQ))Q̃] ij L̂λk
(4.32)

d̂) (-1)ø ∑
i,j)1

3

[R (dFλ
sf)Q̃] ij ×

{[N ∂∂F + N′θ
1

F

∂

∂θ
+ Mφ

1

F sinθ

∂

∂φ]
ij

-

i

p
∑
k)1

3 εijk

F(Njj
2 - Nii

2)
(NjjĴk

Iλ - NiiL̂λk
)} (4.33)

[R (dFλ
sf)Q̃] ij ) ∑

k,l)1

3

Rikdxk
(l)Qjl (4.34)

∇λ ) (-1)ø[R̃ ÂQ + P̂λ] (4.35)

Â ) N
∂

∂F
+ N′θ

1
F
∂

∂θ
+ Mφ

1
F sinθ

∂

∂φ
(4.36)

P̂λ ) F̂λ - Ĝλ (4.37)

F̂λij
) -

i

pF
∑
l,m)1

3 RliQmjNmm

Nmm
2 - Nll

2
∑
k)1

3

εlmkĴk
Iλ (4.38)

Ĝλij
) -

i

pF
∑
l,m)1

3 RliQmjNll

Nmm
2 - Nll

2
∑
k)1

3

εlmkL̂λk
(4.39)

(ÂB̂)lm ) ∑
k)1

3 εlmkB̂k

Nmm
2 - Nll

2
(4.40)

ÂB̂ ) (0 B̂3

N22
2 - N11

2

B̂2

N11
2 - N33

2

B̂3

N22
2 - N11

2 0
B̂1

N33
2 - N22

2

B̂2

N11
2 - N33

2

B̂1

N33
2 - N22

2 0
) (4.41)

F̂λ ) - i
pF

R̃ ÂĴIλNQ (4.42)

Ĝλ ) i
pF
Q̃ NẪL̂λ

R (4.43)

(B̂C)ψ(x) * (C̃B̂̃)ψ(x) (4.44)
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operator, (4.44) means that

As a result, it is safer to use (4.38) and (4.39) instead of (4.42)
and (4.43).
4.1.2. The Kinetic Energy Operator. To evaluateT̂ we

replace (4.35) into (4.3):

In view of the remarks made after (4.43), it is better to rewrite
this expression in the “safe” form

From it we get

with the T̂λa (a ) 1 through 4) defined by

We now proceed to evaluate theT̂λa. The operator (R̃ÂQ)ik
can be expressed as

The matrix elementsRli and Qlk depend onaλ and δλ,
respectively, whereas as indicated by (4.36) the operatorÂll acts
onF, θ, andφ only. Therefore,Âll commutes with bothRli and
Qlk and we can put (4.53) in the form

Replacement of this expression into (4.49) and use of the
orthogonality properties ofR andQ and of the definition ofÂ
given by (4.36) yields

where K̂2 is an effective hyperangular momentum operator
associated with the principal moment of inertia hyperanglesθ,
φ

Similarly it is straightforward to show that

The evaluation of T̂λ3 is similarly straightforward, albeit
lengthier. The result is

The evaluation ofT̂λ4 is more complicated because the operators
ĴIλ andL̂λ act on the anglesaλ andδλ, respectively, which appear
in R (aλ) andQ (δλ). To that effect it is useful to use the
relations

and

whereε(k) is the 3× 3 skew-symmetric matrix defined by

With their help and some extensive but otherwise straightfor-
ward algebra we get:

Substituting (4.55), (4.57), (4.58), and (4.62) into (4.48) leads
to the expression for the kinetic energy operator in the row-
orthonormal hyperspherical coordinatesaλ, ø, F, θ, φ, δλ,

whereT̂F(F) is the system’s hyperradial kinetic energy operator

andΛ̂2 its grand conical angular momentum operator

The operatorK̂2 was defined in (4.56) andB̂ andĈ2 are given
by

where

B̂C * C̃B̂̃ (4.45)

T̂) - p2

2µ
tr[(R̃ÂQ + P̂λ)(R̃AĥQ + P̂λ)] (4.46)

T̂) -
p2

2µ
∑
i,k)1

3

(R̃ÂQ + P̂λ)ik(R̃ÂQ + P̂λ)ik )

-
p2

2µ
∑
i,k)1

3

(R̂ÂQ + P̂λ)ik
2 (4.47)

T̂) ∑
a)1

4

T̂λa
(4.48)

T̂λ1
) -

p2

2µ
∑
i,k)1

3

(R̃ÂQ)ik
2 (4.49)

T̂λ2
) -

p2

2µ
∑
i,k)1

3

(R̃ÂQ)ikP̂λik
(4.50)

T̂λ3
) -

p2

2µ
∑
i,k)1

3

P̂λik
(R̃ÂQ)ik (4.51)

T̂λ4
) -

p2

2µ
∑
i,k)1

3

(P̂λ)ik
2 (4.52)

(R̃ÂQ)ik ) ∑
l,m)1

3

(R̃)il(Â)lm(Q)mk) ∑
l,m)1

3

RliÂllδlmQmk)

∑
l)1

3

RliÂllQlk (4.53)

(R̃ÂQ)ik ) ∑
l)1

3

RliQlkÂll ) ∑
l)1

3

ÂllRliQlk (4.54)

T̂λ1
) - p2

2µ
trÂ2 ) - p2

2µ
1

F2
∂

∂F
F2 ∂
∂F

+ K̂2

2µF2
(4.55)

K̂2 ) -p2( 1
sinθ

∂

∂θ
sinθ ∂

∂θ
+ 1

sin2 θ
∂
2

∂φ
2) (4.56)

T̂λ2
) - p2

2µ
tr(R̃ÂQP̂λ) ) 0 (4.57)

T̂λ3
) -

p2

µF
∑

l,m,k)1

3 Nmmεlmk
2

Nmm
2 - Nll

2
Âmm (4.58)

Ĵk
IλR(aλ) ) p

i
ε
(k)R(aλ) k) 1,2,3 (4.59)

L̂λk
R(δλ) ) p

i
R(δλ)ε

(k) k) 1,2,3 (4.60)

[ε(k)] lm ) εklm k,l,m) 1,2,3 (4.61)

T̂λ4
)

1

2µF2
∑

l,m,k)1

3 [ εlmk

Nmm
2 - Nll

2
(NmmĴk

Iλ - NllL̂λk
)]2 (4.62)

T̂) T̂F(F) + 1

2µF2
Λ̂2(aλ,θ,φ,δλ) (4.63)

T̂F(F) ) - p2

2µ
1

F8
∂

∂F
F8 ∂
∂F

(4.64)

Λ̂2 ) K̂2(θ,φ) + B̂(θ,φ) + Ĉ2(aλ,δλ;θ,φ) (4.65)

B̂(θ,φ) ) -2p2[bθ(θ,φ)
∂

∂θ
+ 1
sinθ

bφ(θ,φ)
∂

∂φ] (4.66)
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and

The Nii, N′θii, and Mφii in these equations are the diagonal
elements of the matricesN,N′θ, andMφ defined by (2.23), (4.18),
and (4.19), respectively.
The nuclear motion Schro¨dinger equation for the system

associated with (5.1) is

In view of the expression for the four-particle volume element
derived in section 4.2, it is convenient to perform the dependent
variable change defined by

whereg (θ,φ) is given by (4.102). The Schro¨dinger equation
satisfied byψ is

where the new nuclear motion HamiltonianĤ is given by

with

Vλeff is an effective potential defined as

with the centrifugal potentialVλcent being

The operatorĈ2 is positive-definite and can be written as

where Ĉλ is a 6-dimensional column vector operator whose
elementsĈλi (i ) 1, ..., 6) are

As will be shown in section 4.3, although the signs of theĈλi
areλ-dependent (i.e., may change underλ f ν transformations),
Ĉ2 is kinematic-rotation-invariant. The form of the kinetic
energy operatorû given by (4.74) through (4.76) is particularly
simple and appropriate for using in reactive scattering calcula-
tions of tetraatomic systems.
In view of (2.7), I andK have equal eigenvector matrices

and their eigenvalues are inter-related by

As a result of this equation and of (2.13), the principal moments
of inertia Ii are ordered according to

From (4.81) we obtain the following relations between the
differences which appear in the denominators of (4.69) and the
differences between pairs of principal moments of inertia

Vλcent
(F,θ,φ) ) - p2

2µF2[ 1

sin2 θ cos2 2φ
+

1

sin2 θ cos2 φ - cos2 θ
+ 1

sin2 θ sin2 φ - cos2 θ
+

2 cos2 θ
(sin2 θ sin2 φ - cos2 θ)2

+ 2 cos2 θ
(sin2 θ cos2 φ - cos2 θ)2]

(4.78)

Ĉ2 ) Ĉ̃λ Ĉλ (4.79)

Ĉλ1
)
N22Ĵ1

Iλ - N33L̂λ1

N22
2 - N33

2

Ĉλ2
)
N33Ĵ2

Iλ - N11L̂λ2

N33
2 - N11

2

Ĉλ3
)
N11Ĵ3

Iλ - N22L̂λ3

N11
2 - N22

2

Ĉλ4
)
N33Ĵ1

Iλ - N22L̂λ1

N33
2 - N22

2

Ĉλ5
)
N11Ĵ2

Iλ - N33L̂λ2

N11
2 - N33

2

Ĉλ6
)
N22Ĵ3

Iλ - N11L̂λ3

N22
2 - N11

2
(4.80)

Ii ) µ(F2 - Ki) ) µF2(1- Nii
2)

i ) 1,2,3 (4.81)

I2 g I1 g I3 g 0 (4.82)

N22
2 - N11

2 ) 1

µF2
(I1 - I2) ) -sin2 θ cos 2φ e 0 (4.83)

bθ(θ,φ) )
N22N′θ22 - N11N′θ11

N22
2 - N11

2
+
N33N′θ33 - N22N′θ22

N33
2 - N22

2
+

N11N′θ11 - N33N′θ33
N11
2 - N33

2
(4.67)

bφ(θ,φ) )
N22Mφ22

- N11Mφ11

N22
2 - N11

2
-

N22Mφ22

N33
2 - N22

2
+

N11Mφ11

N11
2 - N33

2

(4.68)

Ĉ2(aλ,δλ;θ,φ) )
(N22J3

Iλ - N11L̂λ3
)2 + (N11J3

Iλ - N22L̂λ3
)2

(N22
2 - N11

2)2
+

(N33Ĵ1
Iλ - N22L̂λ1

)2 + (N22Ĵ1
Iλ - N33L̂λ1

)2

(N33
2 - N22

2 )2
+

(N11Ĵ2
Iλ - N33L̂λ2

)2 + (N33Ĵ2
Iλ - N11L̂λ2

)2

(N11
2 - N33)

2
(4.69)

ĤΨ(ø,aλ,F,θ,φ,δλ) ) EΨ (4.70)

Ψ ) ψ
F4g1/2(θ,φ)

(4.71)

Ĥψ ) Eψ (4.72)

Ĥ ) û + Vλeff
(4.73)

û ) ûF(F) + 1

2µF2
λ̂2(aλ,θ,φ,δλ) (4.74)

ûF(F) ) - p2

2µ
∂
2

∂F2
(4.75)

λ̂2 ) K̂2(θ,φ) + Ĉ2(aλ,δλ;θ,φ) (4.76)

Vλeff
) Vλ(F,θ,φ,δλ) + Vλcent

(F,θ,φ) (4.77)
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Therefore, for nuclear configurations for which any two of the
system’s principal moments of inertia become degenerate, the
Hamiltonian operator has a pole (the well-known Eckart
singularities86,87), as does the centrifugal potential. It should
be noted that in view of (4.82), we can only haveI2 ) I3 if
both these moments of inertia are equal toI1. The corresponding
geometries are discussed after (5.3). In solving the Schro¨dinger
equation, special attention must be paid to those poles.
4.2. The Volume Element. In what follows, it becomes

useful to define the two sets of nine coordinatesxλl andσλl (l
) 1, ..., 9) by

and

and the two 9× 1 column vectorsxλ andσλ by

Let furthermoredτ and dσλ be the nine-dimensional volume
elements

and

Let Gλ be the 9× 9 nonorthogonal Jacobian matrix of theø,σλ
f xλ transformation defined by

In terms of it we can write

In order to obtaindτ in terms of the row-orthonormal hyper-

spherical coordinatesø,σλ we seek an expression for detGλ as a
function of those coordinates. It is expected that, in view of
the structure of (2.28), in whichFλ

sf is expressed as a product of
3 × 3 matrices,Gλ will have some rows which are orthogonal
to each other, i.e., that the 9× 9 matrixFλ ) GλG̃λ will have
a block-diagonal structure. In order to exploit this possibility,
we use the following identity to evaluate detGλ, which is valid
whether or not such a structure occurs:

We now proceed to evaluateFλ. Let ∇h λ be the 9× 1 vector
gradient operator defined by

It has the same elements as those of the 3× 3 matrix gradient
operator∇λ defined by (4.2) and can be obtained from the latter
by stacking its columns under each other. As a result of (4.91),

the kth row of G is the 1× 9 row vector of∇̃h λσλk and thelth
column of G̃λ is the 9× 1 column vector∇λhσλl, and therefore

The evaluation ofFλ has thus been reduced to the evaluation
of the nine 3× 3 matrices∇ λσλl, which can be accomplished
in a straightforward manner with the help of (4.35). The
eventual result is thatFλ has the expected block-diagonal
structure

whereFλ1 andFλ2 are square matrices of dimensions 3× 3
and 6× 6 respectively given by

and

The matricesKλ andPλ appearing in this expression were
defined in (4.9) and (4.29), respectively, andU andW are 3×
3 matrices defined by

and

N33
2 - N22

2 ) 1

µF2
(I2 - I3) ) cos2 θ - sin2 θ sin2 φ g 0

(4.84)

N11
2 - N33

2 ) 1

µF2
(I3 - I1) ) sin2 θ cos2 φ - cos2 θ e 0

(4.85)

xλ1
) xλ1

(1) xλ2
) xλ2

(1) xλ3
) xλ3

(1)

xλ4
) xλ1

(2) xλ5
) xλ2

(2) xλ6
) xλ3

(2)

xλ7
) xλ1

(3) xλ8
) xλ2

(3) xλ9
) xλ3

(3) (4.86)

σλ1
) F σλ2

) θ σλ3
) φ

σλ4
) aλ σλ5

) bλ σλ6
) cλ

σλ7
) δλ

(1) σλ8
) δλ

(2) σλ9
) δλ

(3) (4.87)

(xλ)l ) xλl
(σλ)l ) σλl

l ) 1, ..., 9 (4.88)

dτ ) ∏
l)1

9

dxλl
) ∏

i,j)1

3

dxλi
(j) (4.89)

dσλ ) ∏
l)1

9

dσλl
(4.90)

(Gλ)kl ) Gλkl
) (-1)ø

∂σλk

∂xλl

k,l ) 1, 2, ..., 9 (4.91)

dτ )
dσλ

|detGλ|
(4.92)

|detGλ| ) [det(GλG̃λ)]
1/2 ) [detFλ]

1/2 (4.93)

(∇h λ)l ) ∂

∂xλl

l ) 1,2,...,9 (4.94)

(Fλ)kl ) (∇̃h λσλk
)(∇h λσλl

) ) tr[(∇̃λσλk
)(∇λσλl

)]

k,l ) 1, 2, ..., 9 (4.95)

Fλ ) (Fλ1 0

0 Fλ2
) (4.96)

Fλ ) (1 0 0
0 1/F2 0

0 0 1/(F2 sin2 θ) ) (4.97)

Fλ2
) 1

F2(K̃λ 0
0 Pλ

) (U W
W U ) (Kλ 0

0 Pλ
) (4.98)

U(θ,φ) )

( N22
2 + N33

2

(N22
2 - N33

2 )2
0 0

0
N33
2 + N11

2

(N33
2 - N11

2 )2
0

0 0
N11
2 + N22

2

(N11
2 - N22

2 )2
) (4.99)
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Relations (4.96) through (4.100), together with (2.23), (4.9),
(4.29), and (4.83) through (4.85) eventually yield

where

Substitution of (4.101) and (4.93) into (4.92) gives the desired
final result

4.3. Transformation Properties. The system’s Hamiltonian
must, of course, be invariant under the operations considered
in sections 3.2 through 3.4. In the present section we examine
how each individual term in (4.63) through (4.69) transforms
under these operations.
4.3.1. Kinematic Rotations. As shown in section 3.2,

whereasø, F, θ, φ are invariant under kinematic rotations,aλ
andδλ are not. We wish to determine the effect of such rotations
on the operatorsĴIλ and L̂ λ which act on these coordinates.
As indicated after (3.9) theν andλ principal axes of inertia

frames are related through

whereInλν
(1)nλν

(3) is given by (3.12). As a result,ĴIλ and ĴIλ are
related through the equivalent expression

This means that either these two operators are equal or two of
its components differ in sign:

The values ofnλν
(1) andnλν

(3) have been given in Table 2.
Let us consider the angular momenta associated with theδ

internal hyperspherical angles. For that purpose, the diagram
depicted in Figure 2 is very useful. In it, GXYZ and GXhYhZh
are auxiliary coordinate systems. The matrices associated with
the arrows are the transformation matrices between the corre-
sponding frames, and the vector operatorsF̂, ĥ;ˆF, L̂ λ, andL̂ ν
are the representation of a hypothetical angular momentum in

each of the corresponding frames. This diagram was chosen
to be consistent with (3.11) and (3.13), i.e., those equations can
be derived from that diagram. It therefore appropriately reflects
the algebra associated with theλ f ν transformation. From it
we get the desired transformation property

which, when compared with (4.105), indicates thatL̂λ transforms
under kinematic rotations the same way thatĴIλ does, and as a
result, that GXλYλZλ transforms the same way as GxIλyIλzIλ does.
The correctness of (4.107) has been independently verified by
a much more laborious direct calculation starting with (4.29)
and itsν counterpart and using (3.11) and the chain rule to obtain
L̂ ν in terms ofL̂ λ.
As a result of (4.105) and (4.107) we see that the operators

Njj Ĵk
Iλ - NiiL̂λk which appear in (4.69) can change sign under

kinematic rotations but that their squares, six of which contribute
to Ĉ2, are kinematic-rotation-invariant, as areT̂F, K̂2, and B̂.
Therefore, not only isT̂ invariant under such transformations
but also each of nine contributing operators have this property.
In addition, sinceF,θ,φ,δλ and F,θ,φ,δν represent the same
internal configuration of the tetraatomic system, we have

and all the contributions to the system’s Hamiltonian are
individually kinematic-rotation-invariant. Such term-by-term
independence thatĤ displays when expressed in row-orthonor-
mal hyperspherical coordinates is very convenient for both
analytical and computational purposes.
4.3.2. Inversion through the Center of Mass.As stated

after (3.23), the only coordinate affected by the inversion
operationû is the chirality coordinateø. Since, however, this
coordinate does not appear inĤ, we conclude that every term
of the Hamiltonian is invariant underû.
4.3.3. Permutations of Identical Nuclei.We consider here

the case in whichP1, P2, andP3 are identical to each other and
distinct fromP4 and use the arrangement channel coordinates
λ ) 1 described in section 3.4. In view of (3.37) through (3.47)
we conclude thatĤ is term-by-term invariant under all sym-
metry operations ofS3. This is a very useful property.

5. Continuity Conditions for the Tetraatomic Schro1dinger
Equation

Under the electronically-adiabatic conditions spelled out at
the beginning of section 4.1, the wave function describing a

W(θ,φ) )

-2( N22N33

(N22
2 - N33

2 )2
0 0

0
N33N11

(N33
2 - N11

2 )2
0

0 0
N11N22

(N11
2 - N22

2 )2
) (4.100)

detFλ ) [F16 sin2 bλ sin
2 δλ

(2)g2(θ,φ) sin2 θ]-2 (4.101)

g(θ,φ) ) sin2 θ cos 2φ(cos2 θ - sin2 θ sin2 φ) ×
(cos2 θ - sin2 θ cos2 φ)

) 1

µ3F6
(I2 - I1)(I2 - I3)(I1 - I3) g 0 (4.102)

dτ ) sinbλdaλdbλdcλF
8dFg(θ,φ) sinθdθdφ sin

δλ
(2)dδλ

(1)dδλ
(2)dδλ

(3)

) sinbλdaλdbλdcλF
2dF 1

µ3
(I2 - I1)(I2 - I3) ×

(I1 - I3) sinθdθdφ sinδλ
(2)dδλ

(1)dδλ
(2)dδλ

(3) (4.103)

GxIνyIνzIν ) Inλν
(1)nλν

(3)Gx
IλyIλzIλ (4.104)

ĴIν ) Inλν
(1)nλν

(3)Ĵ
Iλ (4.105)

Ĵ1
Iν ) (-1)nλν

(1)
Ĵ1
Iλ Ĵ2

Iν ) (-1)nλν
(1)+nλν

(3)
Ĵ2
Iλ Ĵ3

Iν ) (-1)nλν
(3)
Ĵ3
Iλ

(4.106)

Figure 2. Systems of different mathematical frames GXYZ, GXhYhZh,
GXλYλZλ, and GXνYνZν, the associated hyperangular momentum vector

operatorsF̂, Fĥ, L̂ λ, andL̂ ν, and the rotation matrices which inter-relate
them. This diagram summarizes the transformation properties of these
operators.

L̂ ν ) Inλν
(1)nλν

(3)L̂ λ (4.107)

Vλ(F,θ,φ,δλ) ) Vν(F,θ,φ,δν) ) V (4.108)
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physical state of a molecular system is the product of an
electronic wave function, which depends parametrically on the
position of the nuclei, and a nuclear wave function. This product
must be single-valued with respect to the positions of the nuclei,
but its individual factors need not satisfy such a condition.
Nevertheless, the electronic wave function is usually chosen to
be a single-valued function of the nuclear geometry, in which
case so is the nuclear wave function. However, if the electroni-
cally-adiabatic potential energy surface being considered dis-
plays a conical intersection, the electronic wave function, if
required to be real and to depend on the nuclear coordinates in
a manner which is as continuous as possible, changes sign as
the system traverses a closed loop around the conical intersection
in nine-dimensional nuclear configuration space.10 In order that
the electronuclear wave function be everywhere single-valued,
the corresponding nuclear wave function must in such a case
undergo a compensating change of sign, called the geometric
phase effect.4-10 The consequences of this effect have been
detected in atom-diatom chemical reactions.6

To implement the single-valuedness condition in the absence
of a conical intersection, or to include the geometric phase effect
in the presence of one, it is convenient to utilize coordinates
bearing one-to-one correspondences with the configurations of
the system. The space-fixed mass-scaled Jacobi Cartesian
coordinatesxλi

(j) (i ) 1, 2, 3;j ) 1, 2, ..., N- 1) of (2.3) display
this kind of one-to-one correspondence for all possible con-
figurations (including different orientations in space for a given
internal geometry). However, whenever angular coordinates are
introduced, such correspondence breaks down for special
arrangements of the nuclei. In this section we consider these
special geometries for tetraatomic systems when using the row-
orthonormal hyperspherical coordinatesaλ, ø, F, θ, φ, δλ. This
is conveniently done with the help of the symmetrized internal
configuration space mapping vectorXλ defined by65

where

This vector undergoes a six-dimensional proper rotation under
λ f ν transformations and displays a one-to-one correspondence
with internal configurations of the system. As a consequence
of (2.28), its components can be expressed as functions of the
internal hyperspherical coordinatesø, F, θ, φ, δλ. Replacement
of (2.28) into (2.5) furnishes

from which we can calculate therλ
(i)2 and ther λ

(i)‚r λ
(j) needed to

evaluate the componentsXλl (l ) 1, 2, ..., 5) ofXλ. Since|Xλ|
) F, the magnitude ofX6 can be obtained from these first five
components, and its sign is (-1)ø. In this manner, givenø, F,
θ, φ, and δλ, we can calculateXλ. There is a one-to-one
correspondence between the elements ofSλ and the components
of Xλ (except for the sign ofX6) and therefore betweenSλ and

the internal configurations of the system, excluding its chirality.
As a result, the special geometries of interest can be derived
from an analysis of (5.3). This analysis is performed keeping
(2.13) through (2.16) and (2.23) in mind, considering the values
of θ,φ for which (a)N11 ) N22 < N33 (prolate symmetric top
rotor), (b)N11 ) N33 > N22 (oblate symmetric top rotor), and
(c) N11 ) N22 ) N33 (spherical top rotor), and examining the
correspondingSλ and Xλ. Cases a and c lead to special
geometries whereas case b does not. The results are:
1. θ ) 0. Xλ is independent ofφ andδλ

(1).
2. φ ) π/4 andθ * arcsin(2/3)1/2. Xλ is independent of

δλ
(1).
3. θ ) arcsin(2/3)1/2= 54.7° andφ) π/4. Xλ is independent

of δλ.
In addition, due to the structure of matrixR,78 if δλ

(2) ) 0
Fλ
sf depends onδλ

(1) andδλ
(3) through their sum only, a similar

property being valid foraλ andcλ if bλ ) 0. At all of these
geometries, the volume elementdτ of (4.103) vanishes. For
cases 1 and 2 we haveN11 ) N22 < N33, with the moments of
inertia I1 and I2 being equal to each other and greater thanI3.
For case 1, the four nuclei lie on a straight line. For case 2, if
δλ
(2) is set equal to zero, the vectorsr λ

(j) (j ) 1, 2, 3) are
orthogonal to each other andrλ

(1) ) rλ
(2). If the three nucleiPλ1,

Pλ2, andPλ3 have equal masses, the geometry is that of a regular
trigonal pyramid, andXλ is independent ofδλ

(1) and δλ
(3) but

depends onθ. For case 3,N11 ) N22 ) N33, the system’s three
moments of inertia are equal, and all three vectorsr λ

(j) have
equal lengths in addition to being orthogonal to each other. The
first five components ofXλ vanish in this case, and the sixth
one equals (-1)ø F, independently ofδλ. If the four nuclei are
identical, the geometry of the configuration is a regular
tetrahedron. Associated to all these special geometries, there
are distinct sets of values of the row-orthonormal hyperspherical
coordinates which lead to the sameFλ

sf, and the system’s
electronuclear wave function must have the same value at those
degenerate sets. This boundary condition must be fulfilled
regardless of whether or not the system displays a conical
intersection and can be imposed through a judicious choice of
basis functions (either analytical or numerical) in theθ, φ, δλ
hyperangular coordinates.
Let us consider a system in which the nucleiP1, P2, andP3

are identical to each other and distinct fromP4. Let us adopt
theλ ) 1 arrangement channel coordinates of section 3.4 and
consider the motion of the system on an electronically-adiabatic
potential energy surface which displays a conical intersection
with another such surface for configurations for whichP1, P2,
andP3 are on the vertices of an equilateral triangle andP4 is
on the trigonal axis of symmetry of that triangle. When the
system traverses a closed loop in 9D nuclear configuration space
that, in 6D internal configuration space surrounds the locus of
points representing such regular pyramid configurations, the 9D
nuclear wave function must change sign. A loop L, going
through an arbitrary configuration of the system defined bya1,
ø, F, θ, φ, andδ1, can be chosen in general as follows. We
maintainøL, FL, θL, φL, δ1

(2)L, andδ1
(3)L for points on L constant

and equal toø, F, θ, φ, δ1
(2) and δ1

(3), respectively, and vary
δ1
(1)L from δ1

(1) to δ1
(1) + π, moduloπ. At the same time, we

change the Euler anglesa1
L, b1

L, andc1
L with δ1

(1)L from a1, b1,
and c1, to (a1 + π) mod2π, π - b1, and (π - c1) mod2π,
respectively. The reason for choosingδ1

(1)L as the parametric
variable which spans L is that the components ofXλ are linear
functions of sin 2δλ

(1) and cos 2δλ
(1).

If, on the other hand, the system does not display a conical
intersection, its nuclear wave function must have the same value

Xλ ) 1
F((12)[rλ

(3)2 + rλ
(2)2 - 2rλ

(1)2]

(x32 )[rλ
(3)2 - rλ

(2)2]

x3r λ
(3)‚r λ

(2)

x3r λ
(3)‚r λ

(1)

x3r λ
(2)‚r λ

(1)

FX6

) (5.1)

X6 ) (-1)ø[|r λ
(3)× r λ

(2)|2 + |r λ
(3)× r λ

(1)|2 + |r λ
(2)× r λ

(1)|2]1/2
(5.2)

Sλ ) R(δλ)F
2N2(θ,φ)R̃(δλ) (5.3)
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at the beginning and end of that loop. Such continuity
conditions on the nuclear wave functions may be imposed by
an appropriate choice of basis functions inθ, φ, andδλ. Forφ
) π/4, δλ

(2) ) 0 and in the presence of a conical intersection,
the condition that the electronuclear wave function not diverge
at the geometries of that intersection forces the corresponding
nuclear wave function to vanish at those geometries. In the
absence of a conical intersection, the nuclear wave function at
those values ofφ andδλ

(2) is independent ofδλ
(1) andδλ

(3) sum
only. In either case, the resulting electronuclear wave function
satisfies the single-valuedness condition discussed two para-
graphs earlier.
Generally speaking, once a given system of coordinates is

chosen, the corresponding continuity conditions must be deter-
mined before a scattering calculation can be performed.

6. Conclusions

We have considered in this paper a set of row-orthonormal
hyperspherical coordinates for tetraatomic systems and derived
the corresponding nuclear motion Hamiltonian. The simple
transformation properties of the terms of the latter under
kinematic rotations and symmetry operations make those
coordinates a very promising candidate for performing efficient
accurateab initio reactive scattering calculations.
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